我有以下代码来做到这一点,但我如何能做得更好?现在我认为它比嵌套循环更好,但是当您在列表理解中使用生成器时,它开始变得像perl一行程序。

day_count = (end_date - start_date).days + 1
for single_date in [d for d in (start_date + timedelta(n) for n in range(day_count)) if d <= end_date]:
    print strftime("%Y-%m-%d", single_date.timetuple())

笔记

我不是用这个来打印的。这只是为了演示。 start_date和end_date变量是datetime。date对象,因为我不需要时间戳。(它们将用于生成报告)。

样例输出

开始日期为2009-05-30,结束日期为2009-06-09:

2009-05-30
2009-05-31
2009-06-01
2009-06-02
2009-06-03
2009-06-04
2009-06-05
2009-06-06
2009-06-07
2009-06-08
2009-06-09

当前回答

你可以使用箭头:

这是一个来自文档的例子,在几个小时内迭代:

from arrow import Arrow

>>> start = datetime(2013, 5, 5, 12, 30)
>>> end = datetime(2013, 5, 5, 17, 15)
>>> for r in Arrow.range('hour', start, end):
...     print repr(r)
...
<Arrow [2013-05-05T12:30:00+00:00]>
<Arrow [2013-05-05T13:30:00+00:00]>
<Arrow [2013-05-05T14:30:00+00:00]>
<Arrow [2013-05-05T15:30:00+00:00]>
<Arrow [2013-05-05T16:30:00+00:00]>

要在几天内迭代,你可以这样使用:

>>> start = Arrow(2013, 5, 5)
>>> end = Arrow(2013, 5, 5)
>>> for r in Arrow.range('day', start, end):
...     print repr(r)

(没有检查你是否能通过datetime。日期对象,但无论如何箭头对象通常更容易)

其他回答

对于那些对python函数方式感兴趣的人:

from datetime import date, timedelta
from itertools import count, takewhile

for d in takewhile(lambda x: x<=date(2009,6,9), map(lambda x:date(2009,5,30)+timedelta(days=x), count())):
    print(d)
for i in range(16):
    print datetime.date.today() + datetime.timedelta(days=i)

使用dateutil库:

from datetime import date
from dateutil.rrule import rrule, DAILY

a = date(2009, 5, 30)
b = date(2009, 6, 9)

for dt in rrule(DAILY, dtstart=a, until=b):
    print dt.strftime("%Y-%m-%d")

这个python库有许多更高级的特性,其中一些非常有用,比如相对增量,并且被实现为单个文件(模块),很容易包含到项目中。

为了完整起见,Pandas还有一个period_range函数用于时间戳越界:

import pandas as pd

pd.period_range(start='1/1/1626', end='1/08/1627', freq='D')

您可以简单而可靠地使用pandas库在两个日期之间生成一系列日期

import pandas as pd

print pd.date_range(start='1/1/2010', end='1/08/2018', freq='M')

您可以通过设置“freq”为D, M, Q, Y来改变生成日期的频率 (每天,每月,每季,每年 )