我有以下代码来做到这一点,但我如何能做得更好?现在我认为它比嵌套循环更好,但是当您在列表理解中使用生成器时,它开始变得像perl一行程序。

day_count = (end_date - start_date).days + 1
for single_date in [d for d in (start_date + timedelta(n) for n in range(day_count)) if d <= end_date]:
    print strftime("%Y-%m-%d", single_date.timetuple())

笔记

我不是用这个来打印的。这只是为了演示。 start_date和end_date变量是datetime。date对象,因为我不需要时间戳。(它们将用于生成报告)。

样例输出

开始日期为2009-05-30,结束日期为2009-06-09:

2009-05-30
2009-05-31
2009-06-01
2009-06-02
2009-06-03
2009-06-04
2009-06-05
2009-06-06
2009-06-07
2009-06-08
2009-06-09

当前回答

您可以简单而可靠地使用pandas库在两个日期之间生成一系列日期

import pandas as pd

print pd.date_range(start='1/1/2010', end='1/08/2018', freq='M')

您可以通过设置“freq”为D, M, Q, Y来改变生成日期的频率 (每天,每月,每季,每年 )

其他回答

from datetime import date,timedelta
delta = timedelta(days=1)
start = date(2020,1,1)
end=date(2020,9,1)
loop_date = start
while loop_date<=end:
    print(loop_date)
    loop_date+=delta

显示从今天开始的最后n天:

import datetime
for i in range(0, 100):
    print((datetime.date.today() + datetime.timedelta(i)).isoformat())

输出:

2016-06-29
2016-06-30
2016-07-01
2016-07-02
2016-07-03
2016-07-04

对于那些对python函数方式感兴趣的人:

from datetime import date, timedelta
from itertools import count, takewhile

for d in takewhile(lambda x: x<=date(2009,6,9), map(lambda x:date(2009,5,30)+timedelta(days=x), count())):
    print(d)

下面是一个通用日期范围函数的代码,类似于Ber的答案,但更灵活:

def count_timedelta(delta, step, seconds_in_interval):
    """Helper function for iterate.  Finds the number of intervals in the timedelta."""
    return int(delta.total_seconds() / (seconds_in_interval * step))


def range_dt(start, end, step=1, interval='day'):
    """Iterate over datetimes or dates, similar to builtin range."""
    intervals = functools.partial(count_timedelta, (end - start), step)

    if interval == 'week':
        for i in range(intervals(3600 * 24 * 7)):
            yield start + datetime.timedelta(weeks=i) * step

    elif interval == 'day':
        for i in range(intervals(3600 * 24)):
            yield start + datetime.timedelta(days=i) * step

    elif interval == 'hour':
        for i in range(intervals(3600)):
            yield start + datetime.timedelta(hours=i) * step

    elif interval == 'minute':
        for i in range(intervals(60)):
            yield start + datetime.timedelta(minutes=i) * step

    elif interval == 'second':
        for i in range(intervals(1)):
            yield start + datetime.timedelta(seconds=i) * step

    elif interval == 'millisecond':
        for i in range(intervals(1 / 1000)):
            yield start + datetime.timedelta(milliseconds=i) * step

    elif interval == 'microsecond':
        for i in range(intervals(1e-6)):
            yield start + datetime.timedelta(microseconds=i) * step

    else:
        raise AttributeError("Interval must be 'week', 'day', 'hour' 'second', \
            'microsecond' or 'millisecond'.")

Numpy的arange函数可以应用于日期:

import numpy as np
from datetime import datetime, timedelta
d0 = datetime(2009, 1,1)
d1 = datetime(2010, 1,1)
dt = timedelta(days = 1)
dates = np.arange(d0, d1, dt).astype(datetime)

astype的用途是从numpy转换。Datetime64到datetime数组。datetime对象。