我有以下代码来做到这一点,但我如何能做得更好?现在我认为它比嵌套循环更好,但是当您在列表理解中使用生成器时,它开始变得像perl一行程序。

day_count = (end_date - start_date).days + 1
for single_date in [d for d in (start_date + timedelta(n) for n in range(day_count)) if d <= end_date]:
    print strftime("%Y-%m-%d", single_date.timetuple())

笔记

我不是用这个来打印的。这只是为了演示。 start_date和end_date变量是datetime。date对象,因为我不需要时间戳。(它们将用于生成报告)。

样例输出

开始日期为2009-05-30,结束日期为2009-06-09:

2009-05-30
2009-05-31
2009-06-01
2009-06-02
2009-06-03
2009-06-04
2009-06-05
2009-06-06
2009-06-07
2009-06-08
2009-06-09

当前回答

下面做一个按天递增的范围怎么样:

for d in map( lambda x: startDate+datetime.timedelta(days=x), xrange( (stopDate-startDate).days ) ):
  # Do stuff here

startDate和stopDate是datetime。日期对象

对于通用版本:

for d in map( lambda x: startTime+x*stepTime, xrange( (stopTime-startTime).total_seconds() / stepTime.total_seconds() ) ):
  # Do stuff here

startTime和stopTime是datetime。日期或datetime。datetime对象 (两者应是同一类型) stepTime是一个timedelta对象

注意.total_seconds()只在python 2.7之后才被支持。如果你被早期版本困住了,你可以写自己的函数:

def total_seconds( td ):
  return float(td.microseconds + (td.seconds + td.days * 24 * 3600) * 10**6) / 10**6

其他回答

一般来说,Pandas非常适合时间序列,并直接支持日期范围。

import pandas as pd
daterange = pd.date_range(start_date, end_date)

然后你可以循环daterrange来打印日期:

for single_date in daterange:
    print (single_date.strftime("%Y-%m-%d"))

它也有很多选择,让生活更轻松。例如,如果您只想要工作日,您只需交换bdate_range。看到http://pandas.pydata.org/pandas-docs/stable/timeseries.html generating-ranges-of-timestamps

Pandas的强大之处在于它的数据框架,它支持向量化操作(很像numpy),使得跨大量数据的操作非常快速和简单。

编辑: 你也可以完全跳过for循环,直接打印出来,这样更简单、更高效:

print(daterange)
for i in range(16):
    print datetime.date.today() + datetime.timedelta(days=i)

在元组中存储范围参数的可逆步骤略有不同。

def date_range(start, stop, step=1, inclusive=False):
    day_count = (stop - start).days
    if inclusive:
        day_count += 1

    if step > 0:
        range_args = (0, day_count, step)
    elif step < 0:
        range_args = (day_count - 1, -1, step)
    else:
        raise ValueError("date_range(): step arg must be non-zero")

    for i in range(*range_args):
        yield start + timedelta(days=i)

这可能更清楚:

from datetime import date, timedelta

start_date = date(2019, 1, 1)
end_date = date(2020, 1, 1)
delta = timedelta(days=1)
while start_date <= end_date:
    print(start_date.strftime("%Y-%m-%d"))
    start_date += delta

为了完整起见,Pandas还有一个period_range函数用于时间戳越界:

import pandas as pd

pd.period_range(start='1/1/1626', end='1/08/1627', freq='D')