我有以下代码来做到这一点,但我如何能做得更好?现在我认为它比嵌套循环更好,但是当您在列表理解中使用生成器时,它开始变得像perl一行程序。

day_count = (end_date - start_date).days + 1
for single_date in [d for d in (start_date + timedelta(n) for n in range(day_count)) if d <= end_date]:
    print strftime("%Y-%m-%d", single_date.timetuple())

笔记

我不是用这个来打印的。这只是为了演示。 start_date和end_date变量是datetime。date对象,因为我不需要时间戳。(它们将用于生成报告)。

样例输出

开始日期为2009-05-30,结束日期为2009-06-09:

2009-05-30
2009-05-31
2009-06-01
2009-06-02
2009-06-03
2009-06-04
2009-06-05
2009-06-06
2009-06-07
2009-06-08
2009-06-09

当前回答

下面做一个按天递增的范围怎么样:

for d in map( lambda x: startDate+datetime.timedelta(days=x), xrange( (stopDate-startDate).days ) ):
  # Do stuff here

startDate和stopDate是datetime。日期对象

对于通用版本:

for d in map( lambda x: startTime+x*stepTime, xrange( (stopTime-startTime).total_seconds() / stepTime.total_seconds() ) ):
  # Do stuff here

startTime和stopTime是datetime。日期或datetime。datetime对象 (两者应是同一类型) stepTime是一个timedelta对象

注意.total_seconds()只在python 2.7之后才被支持。如果你被早期版本困住了,你可以写自己的函数:

def total_seconds( td ):
  return float(td.microseconds + (td.seconds + td.days * 24 * 3600) * 10**6) / 10**6

其他回答

为什么有两个嵌套迭代?对我来说,它只用一次迭代就产生了相同的数据列表:

for single_date in (start_date + timedelta(n) for n in range(day_count)):
    print ...

没有列表被存储,只有一个生成器被迭代。此外,生成器中的“if”似乎是不必要的。

毕竟,线性序列应该只需要一个迭代器,而不是两个。

与John Machin讨论后更新:

也许最优雅的解决方案是使用生成器函数来完全隐藏/抽象日期范围内的迭代:

from datetime import date, timedelta

def daterange(start_date, end_date):
    for n in range(int((end_date - start_date).days)):
        yield start_date + timedelta(n)

start_date = date(2013, 1, 1)
end_date = date(2015, 6, 2)
for single_date in daterange(start_date, end_date):
    print(single_date.strftime("%Y-%m-%d"))

注意:为了与内置的range()函数保持一致,此迭代在到达end_date之前停止。因此,对于包容性迭代使用第二天,就像使用range()一样。

使用dateutil库:

from datetime import date
from dateutil.rrule import rrule, DAILY

a = date(2009, 5, 30)
b = date(2009, 6, 9)

for dt in rrule(DAILY, dtstart=a, until=b):
    print dt.strftime("%Y-%m-%d")

这个python库有许多更高级的特性,其中一些非常有用,比如相对增量,并且被实现为单个文件(模块),很容易包含到项目中。

一般来说,Pandas非常适合时间序列,并直接支持日期范围。

import pandas as pd
daterange = pd.date_range(start_date, end_date)

然后你可以循环daterrange来打印日期:

for single_date in daterange:
    print (single_date.strftime("%Y-%m-%d"))

它也有很多选择,让生活更轻松。例如,如果您只想要工作日,您只需交换bdate_range。看到http://pandas.pydata.org/pandas-docs/stable/timeseries.html generating-ranges-of-timestamps

Pandas的强大之处在于它的数据框架,它支持向量化操作(很像numpy),使得跨大量数据的操作非常快速和简单。

编辑: 你也可以完全跳过for循环,直接打印出来,这样更简单、更高效:

print(daterange)
from datetime import date,timedelta
delta = timedelta(days=1)
start = date(2020,1,1)
end=date(2020,9,1)
loop_date = start
while loop_date<=end:
    print(loop_date)
    loop_date+=delta
import datetime

def daterange(start, stop, step=datetime.timedelta(days=1), inclusive=False):
  # inclusive=False to behave like range by default
  if step.days > 0:
    while start < stop:
      yield start
      start = start + step
      # not +=! don't modify object passed in if it's mutable
      # since this function is not restricted to
      # only types from datetime module
  elif step.days < 0:
    while start > stop:
      yield start
      start = start + step
  if inclusive and start == stop:
    yield start

# ...

for date in daterange(start_date, end_date, inclusive=True):
  print strftime("%Y-%m-%d", date.timetuple())

此函数通过支持负步长等功能,可以实现超出严格要求的功能。只要分解了范围逻辑,就不需要单独的day_count,最重要的是,当从多个地方调用函数时,代码变得更容易阅读。