我有以下代码来做到这一点,但我如何能做得更好?现在我认为它比嵌套循环更好,但是当您在列表理解中使用生成器时,它开始变得像perl一行程序。

day_count = (end_date - start_date).days + 1
for single_date in [d for d in (start_date + timedelta(n) for n in range(day_count)) if d <= end_date]:
    print strftime("%Y-%m-%d", single_date.timetuple())

笔记

我不是用这个来打印的。这只是为了演示。 start_date和end_date变量是datetime。date对象,因为我不需要时间戳。(它们将用于生成报告)。

样例输出

开始日期为2009-05-30,结束日期为2009-06-09:

2009-05-30
2009-05-31
2009-06-01
2009-06-02
2009-06-03
2009-06-04
2009-06-05
2009-06-06
2009-06-07
2009-06-08
2009-06-09

当前回答

如果你打算使用动态timedelta,那么你可以使用:

1. 使用while循环

def datetime_range(start: datetime, end: datetime, delta: timedelta) -> Generator[datetime, None, None]:
    while start <= end:
        yield start
        start += delta

2. 使用for循环

from datetime import datetime, timedelta
from typing import Generator


def datetime_range(start: datetime, end: datetime, delta: timedelta) -> Generator[datetime, None, None]:
    delta_units = int((end - start) / delta)

    for _ in range(delta_units + 1):
        yield start
        start += delta

3.如果你正在使用async/await

async def datetime_range(start: datetime, end: datetime, delta: timedelta) -> AsyncGenerator[datetime, None]:
    delta_units = int((end - start) / delta)

    for _ in range(delta_units + 1):
        yield start
        start += delta

4. 列表理解

def datetime_range(start: datetime, end: datetime, delta: timedelta) -> List[datetime]:
    delta_units = int((end - start) / delta)
    return [start + (delta * index) for index in range(delta_units + 1)]

那么1和2解可以简单地像这样使用

start = datetime(2020, 10, 10, 10, 00)
end = datetime(2022, 10, 10, 18, 00)
delta = timedelta(minutes=30)

result = [time_part for time_part in datetime_range(start, end, delta)]
# or 
for time_part in datetime_range(start, end, delta):
    print(time_part)

3- 3 / 3解决方案可以在异步上下文中使用。因为它运行一个异步生成器对象,该对象只能在异步上下文中使用

start = datetime(2020, 10, 10, 10, 00)
end = datetime(2022, 10, 10, 18, 00)
delta = timedelta(minutes=30)

result = [time_part async for time_part in datetime_range(start, end, delta)]

async for time_part in datetime_range(start, end, delta):
    print(time_part)

这些解决方案的优点是它们都使用了动态的timedelta。这在你不知道你将得到哪个时间增量的情况下非常有用。

其他回答

您可以简单而可靠地使用pandas库在两个日期之间生成一系列日期

import pandas as pd

print pd.date_range(start='1/1/2010', end='1/08/2018', freq='M')

您可以通过设置“freq”为D, M, Q, Y来改变生成日期的频率 (每天,每月,每季,每年 )

如果你打算使用动态timedelta,那么你可以使用:

1. 使用while循环

def datetime_range(start: datetime, end: datetime, delta: timedelta) -> Generator[datetime, None, None]:
    while start <= end:
        yield start
        start += delta

2. 使用for循环

from datetime import datetime, timedelta
from typing import Generator


def datetime_range(start: datetime, end: datetime, delta: timedelta) -> Generator[datetime, None, None]:
    delta_units = int((end - start) / delta)

    for _ in range(delta_units + 1):
        yield start
        start += delta

3.如果你正在使用async/await

async def datetime_range(start: datetime, end: datetime, delta: timedelta) -> AsyncGenerator[datetime, None]:
    delta_units = int((end - start) / delta)

    for _ in range(delta_units + 1):
        yield start
        start += delta

4. 列表理解

def datetime_range(start: datetime, end: datetime, delta: timedelta) -> List[datetime]:
    delta_units = int((end - start) / delta)
    return [start + (delta * index) for index in range(delta_units + 1)]

那么1和2解可以简单地像这样使用

start = datetime(2020, 10, 10, 10, 00)
end = datetime(2022, 10, 10, 18, 00)
delta = timedelta(minutes=30)

result = [time_part for time_part in datetime_range(start, end, delta)]
# or 
for time_part in datetime_range(start, end, delta):
    print(time_part)

3- 3 / 3解决方案可以在异步上下文中使用。因为它运行一个异步生成器对象,该对象只能在异步上下文中使用

start = datetime(2020, 10, 10, 10, 00)
end = datetime(2022, 10, 10, 18, 00)
delta = timedelta(minutes=30)

result = [time_part async for time_part in datetime_range(start, end, delta)]

async for time_part in datetime_range(start, end, delta):
    print(time_part)

这些解决方案的优点是它们都使用了动态的timedelta。这在你不知道你将得到哪个时间增量的情况下非常有用。

使用pendulum.period:

import pendulum

start = pendulum.from_format('2020-05-01', 'YYYY-MM-DD', formatter='alternative')
end = pendulum.from_format('2020-05-02', 'YYYY-MM-DD', formatter='alternative')

period = pendulum.period(start, end)

for dt in period:
    print(dt.to_date_string())

下面是一个通用日期范围函数的代码,类似于Ber的答案,但更灵活:

def count_timedelta(delta, step, seconds_in_interval):
    """Helper function for iterate.  Finds the number of intervals in the timedelta."""
    return int(delta.total_seconds() / (seconds_in_interval * step))


def range_dt(start, end, step=1, interval='day'):
    """Iterate over datetimes or dates, similar to builtin range."""
    intervals = functools.partial(count_timedelta, (end - start), step)

    if interval == 'week':
        for i in range(intervals(3600 * 24 * 7)):
            yield start + datetime.timedelta(weeks=i) * step

    elif interval == 'day':
        for i in range(intervals(3600 * 24)):
            yield start + datetime.timedelta(days=i) * step

    elif interval == 'hour':
        for i in range(intervals(3600)):
            yield start + datetime.timedelta(hours=i) * step

    elif interval == 'minute':
        for i in range(intervals(60)):
            yield start + datetime.timedelta(minutes=i) * step

    elif interval == 'second':
        for i in range(intervals(1)):
            yield start + datetime.timedelta(seconds=i) * step

    elif interval == 'millisecond':
        for i in range(intervals(1 / 1000)):
            yield start + datetime.timedelta(milliseconds=i) * step

    elif interval == 'microsecond':
        for i in range(intervals(1e-6)):
            yield start + datetime.timedelta(microseconds=i) * step

    else:
        raise AttributeError("Interval must be 'week', 'day', 'hour' 'second', \
            'microsecond' or 'millisecond'.")
import datetime
from dateutil.rrule import DAILY,rrule

date=datetime.datetime(2019,1,10)

date1=datetime.datetime(2019,2,2)

for i in rrule(DAILY , dtstart=date,until=date1):
     print(i.strftime('%Y%b%d'),sep='\n')

输出:

2019Jan10
2019Jan11
2019Jan12
2019Jan13
2019Jan14
2019Jan15
2019Jan16
2019Jan17
2019Jan18
2019Jan19
2019Jan20
2019Jan21
2019Jan22
2019Jan23
2019Jan24
2019Jan25
2019Jan26
2019Jan27
2019Jan28
2019Jan29
2019Jan30
2019Jan31
2019Feb01
2019Feb02