我有以下代码来做到这一点,但我如何能做得更好?现在我认为它比嵌套循环更好,但是当您在列表理解中使用生成器时,它开始变得像perl一行程序。

day_count = (end_date - start_date).days + 1
for single_date in [d for d in (start_date + timedelta(n) for n in range(day_count)) if d <= end_date]:
    print strftime("%Y-%m-%d", single_date.timetuple())

笔记

我不是用这个来打印的。这只是为了演示。 start_date和end_date变量是datetime。date对象,因为我不需要时间戳。(它们将用于生成报告)。

样例输出

开始日期为2009-05-30,结束日期为2009-06-09:

2009-05-30
2009-05-31
2009-06-01
2009-06-02
2009-06-03
2009-06-04
2009-06-05
2009-06-06
2009-06-07
2009-06-08
2009-06-09

当前回答

这个函数有一些额外的特性:

can pass a string matching the DATE_FORMAT for start or end and it is converted to a date object can pass a date object for start or end error checking in case the end is older than the start import datetime from datetime import timedelta DATE_FORMAT = '%Y/%m/%d' def daterange(start, end): def convert(date): try: date = datetime.datetime.strptime(date, DATE_FORMAT) return date.date() except TypeError: return date def get_date(n): return datetime.datetime.strftime(convert(start) + timedelta(days=n), DATE_FORMAT) days = (convert(end) - convert(start)).days if days <= 0: raise ValueError('The start date must be before the end date.') for n in range(0, days): yield get_date(n) start = '2014/12/1' end = '2014/12/31' print list(daterange(start, end)) start_ = datetime.date.today() end = '2015/12/1' print list(daterange(start, end))

其他回答

为什么不试试呢:

import datetime as dt

start_date = dt.datetime(2012, 12,1)
end_date = dt.datetime(2012, 12,5)

total_days = (end_date - start_date).days + 1 #inclusive 5 days

for day_number in range(total_days):
    current_date = (start_date + dt.timedelta(days = day_number)).date()
    print current_date

您可以简单而可靠地使用pandas库在两个日期之间生成一系列日期

import pandas as pd

print pd.date_range(start='1/1/2010', end='1/08/2018', freq='M')

您可以通过设置“freq”为D, M, Q, Y来改变生成日期的频率 (每天,每月,每季,每年 )

for i in range(16):
    print datetime.date.today() + datetime.timedelta(days=i)

显示从今天开始的最后n天:

import datetime
for i in range(0, 100):
    print((datetime.date.today() + datetime.timedelta(i)).isoformat())

输出:

2016-06-29
2016-06-30
2016-07-01
2016-07-02
2016-07-03
2016-07-04

为了完整起见,Pandas还有一个period_range函数用于时间戳越界:

import pandas as pd

pd.period_range(start='1/1/1626', end='1/08/1627', freq='D')