我有以下代码来做到这一点,但我如何能做得更好?现在我认为它比嵌套循环更好,但是当您在列表理解中使用生成器时,它开始变得像perl一行程序。
day_count = (end_date - start_date).days + 1
for single_date in [d for d in (start_date + timedelta(n) for n in range(day_count)) if d <= end_date]:
print strftime("%Y-%m-%d", single_date.timetuple())
笔记
我不是用这个来打印的。这只是为了演示。
start_date和end_date变量是datetime。date对象,因为我不需要时间戳。(它们将用于生成报告)。
样例输出
开始日期为2009-05-30,结束日期为2009-06-09:
2009-05-30
2009-05-31
2009-06-01
2009-06-02
2009-06-03
2009-06-04
2009-06-05
2009-06-06
2009-06-07
2009-06-08
2009-06-09
> pip install DateTimeRange
from datetimerange import DateTimeRange
def dateRange(start, end, step):
rangeList = []
time_range = DateTimeRange(start, end)
for value in time_range.range(datetime.timedelta(days=step)):
rangeList.append(value.strftime('%m/%d/%Y'))
return rangeList
dateRange("2018-09-07", "2018-12-25", 7)
Out[92]:
['09/07/2018',
'09/14/2018',
'09/21/2018',
'09/28/2018',
'10/05/2018',
'10/12/2018',
'10/19/2018',
'10/26/2018',
'11/02/2018',
'11/09/2018',
'11/16/2018',
'11/23/2018',
'11/30/2018',
'12/07/2018',
'12/14/2018',
'12/21/2018']
我也有类似的问题,但我需要每月而不是每天迭代一次。
这就是我的解
import calendar
from datetime import datetime, timedelta
def days_in_month(dt):
return calendar.monthrange(dt.year, dt.month)[1]
def monthly_range(dt_start, dt_end):
forward = dt_end >= dt_start
finish = False
dt = dt_start
while not finish:
yield dt.date()
if forward:
days = days_in_month(dt)
dt = dt + timedelta(days=days)
finish = dt > dt_end
else:
_tmp_dt = dt.replace(day=1) - timedelta(days=1)
dt = (_tmp_dt.replace(day=dt.day))
finish = dt < dt_end
示例# 1
date_start = datetime(2016, 6, 1)
date_end = datetime(2017, 1, 1)
for p in monthly_range(date_start, date_end):
print(p)
输出
2016-06-01
2016-07-01
2016-08-01
2016-09-01
2016-10-01
2016-11-01
2016-12-01
2017-01-01
例# 2
date_start = datetime(2017, 1, 1)
date_end = datetime(2016, 6, 1)
for p in monthly_range(date_start, date_end):
print(p)
输出
2017-01-01
2016-12-01
2016-11-01
2016-10-01
2016-09-01
2016-08-01
2016-07-01
2016-06-01
Numpy的arange函数可以应用于日期:
import numpy as np
from datetime import datetime, timedelta
d0 = datetime(2009, 1,1)
d1 = datetime(2010, 1,1)
dt = timedelta(days = 1)
dates = np.arange(d0, d1, dt).astype(datetime)
astype的用途是从numpy转换。Datetime64到datetime数组。datetime对象。
使用dateutil库:
from datetime import date
from dateutil.rrule import rrule, DAILY
a = date(2009, 5, 30)
b = date(2009, 6, 9)
for dt in rrule(DAILY, dtstart=a, until=b):
print dt.strftime("%Y-%m-%d")
这个python库有许多更高级的特性,其中一些非常有用,比如相对增量,并且被实现为单个文件(模块),很容易包含到项目中。
对于那些对python函数方式感兴趣的人:
from datetime import date, timedelta
from itertools import count, takewhile
for d in takewhile(lambda x: x<=date(2009,6,9), map(lambda x:date(2009,5,30)+timedelta(days=x), count())):
print(d)
为什么有两个嵌套迭代?对我来说,它只用一次迭代就产生了相同的数据列表:
for single_date in (start_date + timedelta(n) for n in range(day_count)):
print ...
没有列表被存储,只有一个生成器被迭代。此外,生成器中的“if”似乎是不必要的。
毕竟,线性序列应该只需要一个迭代器,而不是两个。
与John Machin讨论后更新:
也许最优雅的解决方案是使用生成器函数来完全隐藏/抽象日期范围内的迭代:
from datetime import date, timedelta
def daterange(start_date, end_date):
for n in range(int((end_date - start_date).days)):
yield start_date + timedelta(n)
start_date = date(2013, 1, 1)
end_date = date(2015, 6, 2)
for single_date in daterange(start_date, end_date):
print(single_date.strftime("%Y-%m-%d"))
注意:为了与内置的range()函数保持一致,此迭代在到达end_date之前停止。因此,对于包容性迭代使用第二天,就像使用range()一样。