我有以下代码来做到这一点,但我如何能做得更好?现在我认为它比嵌套循环更好,但是当您在列表理解中使用生成器时,它开始变得像perl一行程序。

day_count = (end_date - start_date).days + 1
for single_date in [d for d in (start_date + timedelta(n) for n in range(day_count)) if d <= end_date]:
    print strftime("%Y-%m-%d", single_date.timetuple())

笔记

我不是用这个来打印的。这只是为了演示。 start_date和end_date变量是datetime。date对象,因为我不需要时间戳。(它们将用于生成报告)。

样例输出

开始日期为2009-05-30,结束日期为2009-06-09:

2009-05-30
2009-05-31
2009-06-01
2009-06-02
2009-06-03
2009-06-04
2009-06-05
2009-06-06
2009-06-07
2009-06-08
2009-06-09

当前回答

对于那些对python函数方式感兴趣的人:

from datetime import date, timedelta
from itertools import count, takewhile

for d in takewhile(lambda x: x<=date(2009,6,9), map(lambda x:date(2009,5,30)+timedelta(days=x), count())):
    print(d)

其他回答

一般来说,Pandas非常适合时间序列,并直接支持日期范围。

import pandas as pd
daterange = pd.date_range(start_date, end_date)

然后你可以循环daterrange来打印日期:

for single_date in daterange:
    print (single_date.strftime("%Y-%m-%d"))

它也有很多选择,让生活更轻松。例如,如果您只想要工作日,您只需交换bdate_range。看到http://pandas.pydata.org/pandas-docs/stable/timeseries.html generating-ranges-of-timestamps

Pandas的强大之处在于它的数据框架,它支持向量化操作(很像numpy),使得跨大量数据的操作非常快速和简单。

编辑: 你也可以完全跳过for循环,直接打印出来,这样更简单、更高效:

print(daterange)
import datetime

def daterange(start, stop, step=datetime.timedelta(days=1), inclusive=False):
  # inclusive=False to behave like range by default
  if step.days > 0:
    while start < stop:
      yield start
      start = start + step
      # not +=! don't modify object passed in if it's mutable
      # since this function is not restricted to
      # only types from datetime module
  elif step.days < 0:
    while start > stop:
      yield start
      start = start + step
  if inclusive and start == stop:
    yield start

# ...

for date in daterange(start_date, end_date, inclusive=True):
  print strftime("%Y-%m-%d", date.timetuple())

此函数通过支持负步长等功能,可以实现超出严格要求的功能。只要分解了范围逻辑,就不需要单独的day_count,最重要的是,当从多个地方调用函数时,代码变得更容易阅读。

为了完整起见,Pandas还有一个period_range函数用于时间戳越界:

import pandas as pd

pd.period_range(start='1/1/1626', end='1/08/1627', freq='D')
> pip install DateTimeRange

from datetimerange import DateTimeRange

def dateRange(start, end, step):
        rangeList = []
        time_range = DateTimeRange(start, end)
        for value in time_range.range(datetime.timedelta(days=step)):
            rangeList.append(value.strftime('%m/%d/%Y'))
        return rangeList

    dateRange("2018-09-07", "2018-12-25", 7)  

    Out[92]: 
    ['09/07/2018',
     '09/14/2018',
     '09/21/2018',
     '09/28/2018',
     '10/05/2018',
     '10/12/2018',
     '10/19/2018',
     '10/26/2018',
     '11/02/2018',
     '11/09/2018',
     '11/16/2018',
     '11/23/2018',
     '11/30/2018',
     '12/07/2018',
     '12/14/2018',
     '12/21/2018']

这是我能想到的最适合人类阅读的解决方案。

import datetime

def daterange(start, end, step=datetime.timedelta(1)):
    curr = start
    while curr < end:
        yield curr
        curr += step