reddit上的一个帖子提出了一个很有趣的问题:

尾递归函数可以简单地转换为迭代函数。其他的可以通过使用显式堆栈进行转换。每个递归都能转化为迭代吗?

文章中的(counter?)例子是:

(define (num-ways x y)
  (case ((= x 0) 1)
        ((= y 0) 1)
        (num-ways2 x y) ))

(define (num-ways2 x y)
  (+ (num-ways (- x 1) y)
     (num-ways x (- y 1))

当前回答

递归不只是在堆栈上调用相同的函数,一旦函数消亡,它就会从堆栈中删除。因此,总是可以使用显式堆栈来管理使用迭代的相同操作的调用。 所以,所有递归代码都可以转换为迭代。

其他回答

我想说是的——一个函数调用只不过是一个goto和一个堆栈操作(粗略地说)。您所需要做的就是模仿调用函数时构建的堆栈,并做一些类似于goto的事情(您可以使用没有显式具有此关键字的语言来模仿goto)。

是的,显式地使用堆栈(但恕我直言,递归读起来要舒服得多)。

可以将任何递归算法转换为非递归算法 一个,但通常逻辑要复杂得多,这样做需要 堆栈的使用。事实上,递归本身使用堆栈:the 函数堆栈。

详情:https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions

除了显式堆栈之外,另一种将递归转换为迭代的模式是使用蹦床。

在这里,函数要么返回最终结果,要么返回原本执行的函数调用的闭包。然后,初始化(蹦床)函数继续调用返回的闭包,直到达到最终结果。

这种方法适用于相互递归的函数,但恐怕它只适用于尾部调用。

http://en.wikipedia.org/wiki/Trampoline_(电脑)

原则上,在数据结构和调用堆栈都具有无限状态的语言中,总是可以删除递归并替换为迭代。这是丘奇-图灵论文的一个基本结论。

Given an actual programming language, the answer is not as obvious. The problem is that it is quite possible to have a language where the amount of memory that can be allocated in the program is limited but where the amount of call stack that can be used is unbounded (32-bit C where the address of stack variables is not accessible). In this case, recursion is more powerful simply because it has more memory it can use; there is not enough explicitly allocatable memory to emulate the call stack. For a detailed discussion on this, see this discussion.