reddit上的一个帖子提出了一个很有趣的问题:

尾递归函数可以简单地转换为迭代函数。其他的可以通过使用显式堆栈进行转换。每个递归都能转化为迭代吗?

文章中的(counter?)例子是:

(define (num-ways x y)
  (case ((= x 0) 1)
        ((= y 0) 1)
        (num-ways2 x y) ))

(define (num-ways2 x y)
  (+ (num-ways (- x 1) y)
     (num-ways x (- y 1))

当前回答

是的,显式地使用堆栈(但恕我直言,递归读起来要舒服得多)。

其他回答

递归函数执行流可以表示为树。 同样的逻辑可以通过循环来实现,循环使用数据结构遍历该树。 深度优先遍历可以使用堆栈完成,宽度优先遍历可以使用队列完成。

所以,答案是肯定的。为什么:https://stackoverflow.com/a/531721/2128327。

任何递归都可以在一个循环中完成吗?是的,因为 图灵机所做的一切都是通过执行一个循环完成的: 获取一条指令, 评估, 转到1。

递归不只是在堆栈上调用相同的函数,一旦函数消亡,它就会从堆栈中删除。因此,总是可以使用显式堆栈来管理使用迭代的相同操作的调用。 所以,所有递归代码都可以转换为迭代。

除了显式堆栈之外,另一种将递归转换为迭代的模式是使用蹦床。

在这里,函数要么返回最终结果,要么返回原本执行的函数调用的闭包。然后,初始化(蹦床)函数继续调用返回的闭包,直到达到最终结果。

这种方法适用于相互递归的函数,但恐怕它只适用于尾部调用。

http://en.wikipedia.org/wiki/Trampoline_(电脑)

递归在实际解释器或编译器中以堆栈或类似结构的形式实现。因此,您当然可以将递归函数转换为迭代函数,因为这就是它总是这样做的(如果是自动的)。您只是在以一种特别的方式复制编译器的工作,而且可能是一种非常丑陋和低效的方式。

这是一个迭代算法:

def howmany(x,y)
  a = {}
  for n in (0..x+y)
    for m in (0..n)
      a[[m,n-m]] = if m==0 or n-m==0 then 1 else a[[m-1,n-m]] + a[[m,n-m-1]] end
    end
  end
  return a[[x,y]]
end