reddit上的一个帖子提出了一个很有趣的问题:

尾递归函数可以简单地转换为迭代函数。其他的可以通过使用显式堆栈进行转换。每个递归都能转化为迭代吗?

文章中的(counter?)例子是:

(define (num-ways x y)
  (case ((= x 0) 1)
        ((= y 0) 1)
        (num-ways2 x y) ))

(define (num-ways2 x y)
  (+ (num-ways (- x 1) y)
     (num-ways x (- y 1))

当前回答

是的,显式地使用堆栈(但恕我直言,递归读起来要舒服得多)。

其他回答

是的,显式地使用堆栈(但恕我直言,递归读起来要舒服得多)。

基本上是的,从本质上讲,你最终不得不做的是将方法调用(隐式地将状态推入堆栈)替换为显式的堆栈推入,以记住“前一个调用”已经到达的位置,然后执行“被调用的方法”。

我可以想象,通过模拟方法调用,循环、堆栈和状态机的组合可以用于所有场景。这是否会“更好”(或者更快,或者在某种意义上更有效)是不可能笼统地说的。

可以将任何递归算法转换为非递归算法 一个,但通常逻辑要复杂得多,这样做需要 堆栈的使用。事实上,递归本身使用堆栈:the 函数堆栈。

详情:https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions

我想说是的——一个函数调用只不过是一个goto和一个堆栈操作(粗略地说)。您所需要做的就是模仿调用函数时构建的堆栈,并做一些类似于goto的事情(您可以使用没有显式具有此关键字的语言来模仿goto)。

原则上,在数据结构和调用堆栈都具有无限状态的语言中,总是可以删除递归并替换为迭代。这是丘奇-图灵论文的一个基本结论。

Given an actual programming language, the answer is not as obvious. The problem is that it is quite possible to have a language where the amount of memory that can be allocated in the program is limited but where the amount of call stack that can be used is unbounded (32-bit C where the address of stack variables is not accessible). In this case, recursion is more powerful simply because it has more memory it can use; there is not enough explicitly allocatable memory to emulate the call stack. For a detailed discussion on this, see this discussion.