reddit上的一个帖子提出了一个很有趣的问题:

尾递归函数可以简单地转换为迭代函数。其他的可以通过使用显式堆栈进行转换。每个递归都能转化为迭代吗?

文章中的(counter?)例子是:

(define (num-ways x y)
  (case ((= x 0) 1)
        ((= y 0) 1)
        (num-ways2 x y) ))

(define (num-ways2 x y)
  (+ (num-ways (- x 1) y)
     (num-ways x (- y 1))

当前回答

是否总是可以为每个递归函数编写非递归形式?

是的。一个简单的形式证明是,微递归和非递归演算(如GOTO)都是图灵完备的。由于所有的图灵完备演算在表达能力上是严格等价的,所以所有的递归函数都可以用非递归图灵完备演算来实现。

不幸的是,我无法在网上找到一个好的,正式的GOTO定义,所以这里有一个:

GOTO程序是在寄存器机器上执行的命令序列P,这样P是以下其中之一:

HALT,停止执行 R = R + 1,其中R是任意寄存器 R = R - 1,其中R是任意寄存器 GOTO x,其中x是一个标签 IF r≠0 GOTO x,其中r是任意寄存器,x是一个标签 一个标签,后面跟着上面的任何命令。

然而,递归函数和非递归函数之间的转换并不总是简单的(除非手动重新实现调用堆栈)。

欲了解更多信息,请参阅这个答案。

其他回答

基本上是的,从本质上讲,你最终不得不做的是将方法调用(隐式地将状态推入堆栈)替换为显式的堆栈推入,以记住“前一个调用”已经到达的位置,然后执行“被调用的方法”。

我可以想象,通过模拟方法调用,循环、堆栈和状态机的组合可以用于所有场景。这是否会“更好”(或者更快,或者在某种意义上更有效)是不可能笼统地说的。

这是一个迭代算法:

def howmany(x,y)
  a = {}
  for n in (0..x+y)
    for m in (0..n)
      a[[m,n-m]] = if m==0 or n-m==0 then 1 else a[[m-1,n-m]] + a[[m,n-m-1]] end
    end
  end
  return a[[x,y]]
end

递归在实际解释器或编译器中以堆栈或类似结构的形式实现。因此,您当然可以将递归函数转换为迭代函数,因为这就是它总是这样做的(如果是自动的)。您只是在以一种特别的方式复制编译器的工作,而且可能是一种非常丑陋和低效的方式。

是的,显式地使用堆栈(但恕我直言,递归读起来要舒服得多)。

消除递归是一个复杂的问题,在定义良好的情况下是可行的。

以下是简单的情况:

尾递归 直接线性递归