如何从列表中删除重复项,同时保持顺序?使用集合删除重复项会破坏原始顺序。 是否有内置的或python的习语?


当前回答

我不是在找死马(这个问题已经很老了,已经有很多好的答案了),但是这里有一个使用熊猫的解决方案,在很多情况下都非常快,而且使用起来非常简单。

import pandas as pd

my_list = [0, 1, 2, 3, 4, 1, 2, 3, 5]

>>> pd.Series(my_list).drop_duplicates().tolist()
# Output:
# [0, 1, 2, 3, 4, 5]

其他回答

from itertools import groupby
[ key for key,_ in groupby(sortedList)]

这个列表甚至不需要排序,充分条件是相等的值被分组在一起。

编辑:我假设“保持顺序”意味着列表实际上是有序的。如果不是这样,那么MizardX的解决方案是正确的。

社区编辑:然而,这是“将重复的连续元素压缩为单个元素”的最优雅的方法。

你可以做一个丑陋的列表理解黑客。

[l[i] for i in range(len(l)) if l.index(l[i]) == i]

对于不可哈希类型(例如列表的列表),基于MizardX的:

def f7_noHash(seq)
    seen = set()
    return [ x for x in seq if str( x ) not in seen and not seen.add( str( x ) )]

只是从外部module1中添加这样一个功能的另一个(非常高性能的)实现:

>>> from iteration_utilities import unique_everseen
>>> lst = [1,1,1,2,3,2,2,2,1,3,4]

>>> list(unique_everseen(lst))
[1, 2, 3, 4]

计时

我做了一些计时(Python 3.6),这些表明它比我测试的所有其他替代方案都快,包括OrderedDict.fromkeys, f7和more_itertools.unique_everseen:

%matplotlib notebook

from iteration_utilities import unique_everseen
from collections import OrderedDict
from more_itertools import unique_everseen as mi_unique_everseen

def f7(seq):
    seen = set()
    seen_add = seen.add
    return [x for x in seq if not (x in seen or seen_add(x))]

def iteration_utilities_unique_everseen(seq):
    return list(unique_everseen(seq))

def more_itertools_unique_everseen(seq):
    return list(mi_unique_everseen(seq))

def odict(seq):
    return list(OrderedDict.fromkeys(seq))

from simple_benchmark import benchmark

b = benchmark([f7, iteration_utilities_unique_everseen, more_itertools_unique_everseen, odict],
              {2**i: list(range(2**i)) for i in range(1, 20)},
              'list size (no duplicates)')
b.plot()

为了确保这一点,我还做了一个重复的测试,看看是否有区别:

import random

b = benchmark([f7, iteration_utilities_unique_everseen, more_itertools_unique_everseen, odict],
              {2**i: [random.randint(0, 2**(i-1)) for _ in range(2**i)] for i in range(1, 20)},
              'list size (lots of duplicates)')
b.plot()

一个只包含一个值:

b = benchmark([f7, iteration_utilities_unique_everseen, more_itertools_unique_everseen, odict],
              {2**i: [1]*(2**i) for i in range(1, 20)},
              'list size (only duplicates)')
b.plot()

在所有这些情况下,iteration_utilities。Unique_everseen函数是最快的(在我的电脑上)。


这iteration_utilities。unique_everseen函数也可以处理输入中的不可哈希值(但是当值是可哈希值时,性能是O(n*n)而不是O(n))。

>>> lst = [{1}, {1}, {2}, {1}, {3}]

>>> list(unique_everseen(lst))
[{1}, {2}, {3}]

1免责声明:我是该软件包的作者。

这里有一些替代选项:http://www.peterbe.com/plog/uniqifiers-benchmark

最快的一个:

def f7(seq):
    seen = set()
    seen_add = seen.add
    return [x for x in seq if not (x in seen or seen_add(x))]

为什么要赋值。添加到seen_add而不是只调用see . Add ?Python是一种动态语言,解析可见。每次迭代添加比解析一个局部变量代价更大。观察。Add可能会在迭代之间发生更改,而运行时还不够聪明,无法排除这种情况。为了安全起见,它必须每次检查对象。

如果您计划在同一个数据集上大量使用这个函数,那么使用一个有序集可能会更好:http://code.activestate.com/recipes/528878/

O(1)每次操作的插入、删除和成员检查。

(小额外注意:see .add()总是返回None,所以以上值只是作为一种尝试更新集合的方式,而不是逻辑测试的组成部分。)