如何从列表中删除重复项,同时保持顺序?使用集合删除重复项会破坏原始顺序。 是否有内置的或python的习语?
当前回答
这将保持秩序并在O(n)时间内运行。基本上,这个想法是在任何发现副本的地方创建一个洞,并将其沉到底部。使用读写指针。每当发现一个重复项时,只有读指针前进,写指针停留在重复项上覆盖它。
def deduplicate(l):
count = {}
(read,write) = (0,0)
while read < len(l):
if l[read] in count:
read += 1
continue
count[l[read]] = True
l[write] = l[read]
read += 1
write += 1
return l[0:write]
其他回答
sequence = ['1', '2', '3', '3', '6', '4', '5', '6']
unique = []
[unique.append(item) for item in sequence if item not in unique]
unique→[1、(2)、(3)、(6)、(4)、(5)]
l = [1,2,2,3,3,...]
n = []
n.extend(ele for ele in l if ele not in set(n))
一个生成器表达式,它使用集合的O(1)查找来确定是否在新列表中包含元素。
借用Haskell为列表定义nub函数时使用的递归思想,这将是一种递归方法:
def unique(lst):
return [] if lst==[] else [lst[0]] + unique(filter(lambda x: x!= lst[0], lst[1:]))
例如:
In [118]: unique([1,5,1,1,4,3,4])
Out[118]: [1, 5, 4, 3]
我对不断增长的数据大小进行了尝试,看到了次线性的时间复杂度(不是确定的,但建议这对于普通数据应该没问题)。
In [122]: %timeit unique(np.random.randint(5, size=(1)))
10000 loops, best of 3: 25.3 us per loop
In [123]: %timeit unique(np.random.randint(5, size=(10)))
10000 loops, best of 3: 42.9 us per loop
In [124]: %timeit unique(np.random.randint(5, size=(100)))
10000 loops, best of 3: 132 us per loop
In [125]: %timeit unique(np.random.randint(5, size=(1000)))
1000 loops, best of 3: 1.05 ms per loop
In [126]: %timeit unique(np.random.randint(5, size=(10000)))
100 loops, best of 3: 11 ms per loop
我还认为有趣的是,这可以很容易地通过其他运算推广到唯一性。是这样的:
import operator
def unique(lst, cmp_op=operator.ne):
return [] if lst==[] else [lst[0]] + unique(filter(lambda x: cmp_op(x, lst[0]), lst[1:]), cmp_op)
例如,你可以传入一个函数,它使用舍入到同一个整数的概念,就像它是“相等”的唯一性目的,像这样:
def test_round(x,y):
return round(x) != round(y)
那么unique(some_list, test_round)将提供列表中唯一的元素,其中唯一性不再意味着传统的相等性(这是通过使用任何类型的基于集或基于字典键的方法来解决这个问题),而是意味着对于每个元素可能舍入的整数K,只取第一个舍入到K的元素,例如:
In [6]: unique([1.2, 5, 1.9, 1.1, 4.2, 3, 4.8], test_round)
Out[6]: [1.2, 5, 1.9, 4.2, 3]
只是从外部module1中添加这样一个功能的另一个(非常高性能的)实现:
>>> from iteration_utilities import unique_everseen
>>> lst = [1,1,1,2,3,2,2,2,1,3,4]
>>> list(unique_everseen(lst))
[1, 2, 3, 4]
计时
我做了一些计时(Python 3.6),这些表明它比我测试的所有其他替代方案都快,包括OrderedDict.fromkeys, f7和more_itertools.unique_everseen:
%matplotlib notebook
from iteration_utilities import unique_everseen
from collections import OrderedDict
from more_itertools import unique_everseen as mi_unique_everseen
def f7(seq):
seen = set()
seen_add = seen.add
return [x for x in seq if not (x in seen or seen_add(x))]
def iteration_utilities_unique_everseen(seq):
return list(unique_everseen(seq))
def more_itertools_unique_everseen(seq):
return list(mi_unique_everseen(seq))
def odict(seq):
return list(OrderedDict.fromkeys(seq))
from simple_benchmark import benchmark
b = benchmark([f7, iteration_utilities_unique_everseen, more_itertools_unique_everseen, odict],
{2**i: list(range(2**i)) for i in range(1, 20)},
'list size (no duplicates)')
b.plot()
为了确保这一点,我还做了一个重复的测试,看看是否有区别:
import random
b = benchmark([f7, iteration_utilities_unique_everseen, more_itertools_unique_everseen, odict],
{2**i: [random.randint(0, 2**(i-1)) for _ in range(2**i)] for i in range(1, 20)},
'list size (lots of duplicates)')
b.plot()
一个只包含一个值:
b = benchmark([f7, iteration_utilities_unique_everseen, more_itertools_unique_everseen, odict],
{2**i: [1]*(2**i) for i in range(1, 20)},
'list size (only duplicates)')
b.plot()
在所有这些情况下,iteration_utilities。Unique_everseen函数是最快的(在我的电脑上)。
这iteration_utilities。unique_everseen函数也可以处理输入中的不可哈希值(但是当值是可哈希值时,性能是O(n*n)而不是O(n))。
>>> lst = [{1}, {1}, {2}, {1}, {3}]
>>> list(unique_everseen(lst))
[{1}, {2}, {3}]
1免责声明:我是该软件包的作者。
不使用导入模块或集的解决方案:
text = "ask not what your country can do for you ask what you can do for your country"
sentence = text.split(" ")
noduplicates = [(sentence[i]) for i in range (0,len(sentence)) if sentence[i] not in sentence[:i]]
print(noduplicates)
给输出:
['ask', 'not', 'what', 'your', 'country', 'can', 'do', 'for', 'you']
推荐文章
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML
- django MultiValueDictKeyError错误,我如何处理它
- 如何在for循环期间修改列表条目?
- 我如何在Django中创建一个鼻涕虫?
- 数组与列表的性能
- 没有名为'django.core.urlresolvers'的模块
- 蟒蛇导出环境文件
- Django - makemigrations -未检测到任何更改
- SQLAlchemy:引擎、连接和会话差异
- 在Python Pandas中删除多个列中的所有重复行
- Postgres唯一约束与索引
- 更改pandas DataFrame中的特定列名
- 将Pandas多索引转换为列