我有一个嵌套的数据列表。它的长度是132,每一项是一个长度为20的列表。是否有一种快速的方法可以将这种结构转换为具有132行和20列数据的数据帧?
下面是一些示例数据:
l <- replicate(
132,
as.list(sample(letters, 20)),
simplify = FALSE
)
我有一个嵌套的数据列表。它的长度是132,每一项是一个长度为20的列表。是否有一种快速的方法可以将这种结构转换为具有132行和20列数据的数据帧?
下面是一些示例数据:
l <- replicate(
132,
as.list(sample(letters, 20)),
simplify = FALSE
)
当前回答
如果您的列表具有相同尺寸的元素,则可以使用来自tidyverse的bind_rows函数。
# Load the tidyverse
Library(tidyverse)
# make a list with elements having same dimensions
My_list <- list(a = c(1, 4, 5), b = c(9, 3, 8))
## Bind the rows
My_list %>% bind_rows()
结果是一个有两行的数据帧。
其他回答
我也想提出这个解决方案。尽管它看起来与其他解决方案相似,但它使用了rbind。从胶合板包装填充。这在列表缺少列或NA值的情况下非常有利。
l <- replicate(10,as.list(sample(letters,10)),simplify = FALSE)
res<-data.frame()
for (i in 1:length(l))
res<-plyr::rbind.fill(res,data.frame(t(unlist(l[i]))))
res
用rbind
do.call(rbind.data.frame, your_list)
编辑:以前的版本返回list的data.frame而不是向量(正如@IanSudbery在评论中指出的那样)。
下面这个简单的命令对我有用:
myDf <- as.data.frame(myList)
参考(Quora的答案)
> myList <- list(a = c(1, 2, 3), b = c(4, 5, 6))
> myList
$a
[1] 1 2 3
$b
[1] 4 5 6
> myDf <- as.data.frame(myList)
a b
1 1 4
2 2 5
3 3 6
> class(myDf)
[1] "data.frame"
但如果不清楚如何将列表转换为数据帧,则会失败:
> myList <- list(a = c(1, 2, 3), b = c(4, 5, 6, 7))
> myDf <- as.data.frame(myList)
函数错误(…), row.names = NULL,检查。rows = FALSE, check.names = TRUE,: 参数暗示不同的行数:3,4
注意:答案是朝着问题的标题,可能会跳过问题的一些细节
从不同的角度;
install.packages("smotefamily")
library(smotefamily)
library(dplyr)
data_example = sample_generator(5000,ratio = 0.80)
genData = BLSMOTE(data_example[,-3],data_example[,3])
#There are many lists in genData. If we want to convert one of them to dataframe.
sentetic=as.data.frame.array(genData$syn_data)
# as.data.frame.array seems to be working.
Reshape2产生与上面的plyr示例相同的输出:
library(reshape2)
l <- list(a = list(var.1 = 1, var.2 = 2, var.3 = 3)
, b = list(var.1 = 4, var.2 = 5, var.3 = 6)
, c = list(var.1 = 7, var.2 = 8, var.3 = 9)
, d = list(var.1 = 10, var.2 = 11, var.3 = 12)
)
l <- melt(l)
dcast(l, L1 ~ L2)
收益率:
L1 var.1 var.2 var.3
1 a 1 2 3
2 b 4 5 6
3 c 7 8 9
4 d 10 11 12
如果你几乎没有像素,你可以在一行w/ recast()中完成这一切。