我有一个嵌套的数据列表。它的长度是132,每一项是一个长度为20的列表。是否有一种快速的方法可以将这种结构转换为具有132行和20列数据的数据帧?

下面是一些示例数据:

l <- replicate(
  132,
  as.list(sample(letters, 20)),
  simplify = FALSE
)

当前回答

如果您的列表具有相同尺寸的元素,则可以使用来自tidyverse的bind_rows函数。

# Load the tidyverse
Library(tidyverse)

# make a list with elements having same dimensions
My_list <- list(a = c(1, 4, 5), b = c(9, 3, 8))

## Bind the rows
My_list %>% bind_rows()

结果是一个有两行的数据帧。

其他回答

如果您的列表具有相同尺寸的元素,则可以使用来自tidyverse的bind_rows函数。

# Load the tidyverse
Library(tidyverse)

# make a list with elements having same dimensions
My_list <- list(a = c(1, 4, 5), b = c(9, 3, 8))

## Bind the rows
My_list %>% bind_rows()

结果是一个有两行的数据帧。

你可以使用plyr包装。 例如表单的嵌套列表

l <- list(a = list(var.1 = 1, var.2 = 2, var.3 = 3)
      , b = list(var.1 = 4, var.2 = 5, var.3 = 6)
      , c = list(var.1 = 7, var.2 = 8, var.3 = 9)
      , d = list(var.1 = 10, var.2 = 11, var.3 = 12)
      )

现在长度为4,并且l中的每个列表包含另一个长度为3的列表。 现在你可以跑了

  library (plyr)
  df <- ldply (l, data.frame)

应该会得到和@Marek和@nico相同的结果。

用rbind

do.call(rbind.data.frame, your_list)

编辑:以前的版本返回list的data.frame而不是向量(正如@IanSudbery在评论中指出的那样)。

我发现的每个解决方案似乎只适用于列表中的每个对象都具有相同的长度。当列表中对象的长度不相等时,我需要将列表转换为data.frame。下面是我提出的基于R的解决方案。毫无疑问,这是非常低效的,但它似乎确实有效。

x1 <- c(2, 13)
x2 <- c(2, 4, 6, 9, 11, 13)
x3 <- c(1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13)
my.results <- list(x1, x2, x3)

# identify length of each list
my.lengths <- unlist(lapply(my.results, function (x) { length(unlist(x))}))
my.lengths
#[1]  2  6 20

# create a vector of values in all lists
my.values <- as.numeric(unlist(c(do.call(rbind, lapply(my.results, as.data.frame)))))
my.values
#[1]  2 13  2  4  6  9 11 13  1  1  2  3  3  4  5  5  6  7  7  8  9  9 10 11 11 12 13 13

my.matrix <- matrix(NA, nrow = max(my.lengths), ncol = length(my.lengths))

my.cumsum <- cumsum(my.lengths)

mm <- 1

for(i in 1:length(my.lengths)) {

     my.matrix[1:my.lengths[i],i] <- my.values[mm:my.cumsum[i]]

     mm <- my.cumsum[i]+1

}

my.df <- as.data.frame(my.matrix)
my.df
#   V1 V2 V3
#1   2  2  1
#2  13  4  1
#3  NA  6  2
#4  NA  9  3
#5  NA 11  3
#6  NA 13  4
#7  NA NA  5
#8  NA NA  5
#9  NA NA  6
#10 NA NA  7
#11 NA NA  7
#12 NA NA  8
#13 NA NA  9
#14 NA NA  9
#15 NA NA 10
#16 NA NA 11
#17 NA NA 11
#18 NA NA 12
#19 NA NA 13
#20 NA NA 13

如何使用map_函数和一个for循环?以下是我的解决方案:

list_to_df <- function(list_to_convert) {
  tmp_data_frame <- data.frame()
  for (i in 1:length(list_to_convert)) {
    tmp <- map_dfr(list_to_convert[[i]], data.frame)
    tmp_data_frame <- rbind(tmp_data_frame, tmp)
  }
  return(tmp_data_frame)
}

其中map_dfr将每个列表元素转换为data.frame,然后rbind将它们合并。

在你的情况下,我猜应该是:

converted_list <- list_to_df(l)