Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
当前回答
我的方法是使用雅皮语(https://github.com/sumerc/yappi). 它与RPC服务器结合使用特别有用,在RPC服务器中(甚至只是为了调试),您可以注册方法来启动、停止和打印配置信息,例如,通过以下方式:
@staticmethod
def startProfiler():
yappi.start()
@staticmethod
def stopProfiler():
yappi.stop()
@staticmethod
def printProfiler():
stats = yappi.get_stats(yappi.SORTTYPE_TTOT, yappi.SORTORDER_DESC, 20)
statPrint = '\n'
namesArr = [len(str(stat[0])) for stat in stats.func_stats]
log.debug("namesArr %s", str(namesArr))
maxNameLen = max(namesArr)
log.debug("maxNameLen: %s", maxNameLen)
for stat in stats.func_stats:
nameAppendSpaces = [' ' for i in range(maxNameLen - len(stat[0]))]
log.debug('nameAppendSpaces: %s', nameAppendSpaces)
blankSpace = ''
for space in nameAppendSpaces:
blankSpace += space
log.debug("adding spaces: %s", len(nameAppendSpaces))
statPrint = statPrint + str(stat[0]) + blankSpace + " " + str(stat[1]).ljust(8) + "\t" + str(
round(stat[2], 2)).ljust(8 - len(str(stat[2]))) + "\t" + str(round(stat[3], 2)) + "\n"
log.log(1000, "\nname" + ''.ljust(maxNameLen - 4) + " ncall \tttot \ttsub")
log.log(1000, statPrint)
然后,当您的程序工作时,您可以通过调用startProfiler RPC方法随时启动探查器,并通过调用printProfiler(或修改RPC方法将其返回给调用者)将探查信息转储到日志文件中,并获得这样的输出:
2014-02-19 16:32:24,128-|SVR-MAIN |-(Thread-3 )-Level 1000:
name ncall ttot tsub
2014-02-19 16:32:24,128-|SVR-MAIN |-(Thread-3 )-Level 1000:
C:\Python27\lib\sched.py.run:80 22 0.11 0.05
M:\02_documents\_repos\09_aheadRepos\apps\ahdModbusSrv\pyAheadRpcSrv\xmlRpc.py.iterFnc:293 22 0.11 0.0
M:\02_documents\_repos\09_aheadRepos\apps\ahdModbusSrv\serverMain.py.makeIteration:515 22 0.11 0.0
M:\02_documents\_repos\09_aheadRepos\apps\ahdModbusSrv\pyAheadRpcSrv\PicklingXMLRPC.py._dispatch:66 1 0.0 0.0
C:\Python27\lib\BaseHTTPServer.py.date_time_string:464 1 0.0 0.0
c:\users\zasiec~1\appdata\local\temp\easy_install-hwcsr1\psutil-1.1.2-py2.7-win32.egg.tmp\psutil\_psmswindows.py._get_raw_meminfo:243 4 0.0 0.0
C:\Python27\lib\SimpleXMLRPCServer.py.decode_request_content:537 1 0.0 0.0
c:\users\zasiec~1\appdata\local\temp\easy_install-hwcsr1\psutil-1.1.2-py2.7-win32.egg.tmp\psutil\_psmswindows.py.get_system_cpu_times:148 4 0.0 0.0
<string>.__new__:8 220 0.0 0.0
C:\Python27\lib\socket.py.close:276 4 0.0 0.0
C:\Python27\lib\threading.py.__init__:558 1 0.0 0.0
<string>.__new__:8 4 0.0 0.0
C:\Python27\lib\threading.py.notify:372 1 0.0 0.0
C:\Python27\lib\rfc822.py.getheader:285 4 0.0 0.0
C:\Python27\lib\BaseHTTPServer.py.handle_one_request:301 1 0.0 0.0
C:\Python27\lib\xmlrpclib.py.end:816 3 0.0 0.0
C:\Python27\lib\SimpleXMLRPCServer.py.do_POST:467 1 0.0 0.0
C:\Python27\lib\SimpleXMLRPCServer.py.is_rpc_path_valid:460 1 0.0 0.0
C:\Python27\lib\SocketServer.py.close_request:475 1 0.0 0.0
c:\users\zasiec~1\appdata\local\temp\easy_install-hwcsr1\psutil-1.1.2-py2.7-win32.egg.tmp\psutil\__init__.py.cpu_times:1066 4 0.0 0.0
它可能对短脚本不太有用,但有助于优化服务器类型的进程,特别是考虑到printProfiler方法可以随时间多次调用,以分析和比较例如不同的程序使用场景。
在较新版本的yappi中,以下代码将起作用:
@staticmethod
def printProfile():
yappi.get_func_stats().print_all()
其他回答
想知道python脚本到底在做什么吗?输入检查外壳。Inspect Shell允许您打印/更改全局并运行函数,而不中断正在运行的脚本。现在有了自动完成和命令历史记录(仅在linux上)。Inspect Shell不是pdb样式的调试器。
https://github.com/amoffat/Inspect-Shell
你可以用它(还有你的手表)。
Python包括一个名为cProfile的分析器。它不仅给出了总的运行时间,而且还分别计算了每个函数的时间,并告诉每个函数被调用了多少次,从而很容易确定应该在哪里进行优化。
您可以从代码内部或从解释器调用它,如下所示:
import cProfile
cProfile.run('foo()')
更有用的是,您可以在运行脚本时调用cProfile:
python -m cProfile myscript.py
为了更简单,我制作了一个名为“profile.bat”的小批处理文件:
python -m cProfile %1
所以我要做的就是跑:
profile euler048.py
我得到了这个:
1007 function calls in 0.061 CPU seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.061 0.061 <string>:1(<module>)
1000 0.051 0.000 0.051 0.000 euler048.py:2(<lambda>)
1 0.005 0.005 0.061 0.061 euler048.py:2(<module>)
1 0.000 0.000 0.061 0.061 {execfile}
1 0.002 0.002 0.053 0.053 {map}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler objects}
1 0.000 0.000 0.000 0.000 {range}
1 0.003 0.003 0.003 0.003 {sum}
编辑:更新了2013年PyCon视频资源的链接,标题为Python评测也可以通过YouTube。
gprof2dot_magic公司
gprof2dot的神奇函数,用于在JupyterLab或Jupyter Notebook中将任何Python语句作为DOT图进行评测。
GitHub回购:https://github.com/mattijn/gprof2dot_magic
安装
确保您有Python包gprof2dot_magic。
pip install gprof2dot_magic
它的依赖关系gprof2dot和graphviz也将被安装
用法
要启用magic函数,首先加载gprof2dot_magic模块
%load_ext gprof2dot_magic
然后将任何行语句配置为DOT图,如下所示:
%gprof2dot print('hello world')
添加到https://stackoverflow.com/a/582337/1070617,
我编写了这个模块,允许您使用cProfile并轻松查看其输出。更多信息:https://github.com/ymichael/cprofilev
$ python -m cprofilev /your/python/program
# Go to http://localhost:4000 to view collected statistics.
另请参见:http://ymichael.com/2014/03/08/profiling-python-with-cprofile.html如何理解收集的统计数据。
我发现,如果您不想使用命令行选项,该功能快速且易于使用。
要使用,只需在要分析的每个函数上方添加@profile。
def profile(fnc):
"""
Profiles any function in following class just by adding @profile above function
"""
import cProfile, pstats, io
def inner (*args, **kwargs):
pr = cProfile.Profile()
pr.enable()
retval = fnc (*args, **kwargs)
pr.disable()
s = io.StringIO()
sortby = 'cumulative' #Ordered
ps = pstats.Stats(pr,stream=s).strip_dirs().sort_stats(sortby)
n=10 #reduced the list to be monitored
ps.print_stats(n)
#ps.dump_stats("profile.prof")
print(s.getvalue())
return retval
return inner
每个函数的输出如下
Ordered by: cumulative time
List reduced from 38 to 10 due to restriction <10>
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.002 0.002 3151212474.py:37(get_pdf_page_count)
1 0.000 0.000 0.002 0.002 fitz.py:3604(__init__)
1 0.001 0.001 0.001 0.001 {built-in method fitz._fitz.new_Document}
1 0.000 0.000 0.000 0.000 fitz.py:5207(__del__)
1 0.000 0.000 0.000 0.000 {built-in method fitz._fitz.delete_Document}
1 0.000 0.000 0.000 0.000 fitz.py:4816(init_doc)
1 0.000 0.000 0.000 0.000 fitz.py:5197(_reset_page_refs)
1 0.000 0.000 0.000 0.000 fitz.py:4821(<listcomp>)
11 0.000 0.000 0.000 0.000 fitz.py:4054(_getMetadata)
1 0.000 0.000 0.000 0.000 weakref.py:241(values)