Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。

描述Python程序运行时间的好方法是什么?


当前回答

@Maxy对这个答案的评论对我帮助很大,我认为它应该得到自己的答案:我已经有了cProfile生成的.pstats文件,我不想用pycallgraph重新运行这些文件,所以我使用了gprof2dot,得到了很好的svgs:

$ sudo apt-get install graphviz
$ git clone https://github.com/jrfonseca/gprof2dot
$ ln -s "$PWD"/gprof2dot/gprof2dot.py ~/bin
$ cd $PROJECT_DIR
$ gprof2dot.py -f pstats profile.pstats | dot -Tsvg -o callgraph.svg

还有BLAM!

它使用点(与pycallgraph使用的相同),因此输出看起来类似。我觉得gprof2dot丢失的信息更少:

其他回答

Scalene是一个新的python分析器,它涵盖了许多用例,对性能的影响最小:

https://github.com/plasma-umass/scalene

它可以在非常精细的水平上评测CPU、GPU和内存利用率。它还特别支持多线程/并行化的python代码。

还值得一提的是GUI cProfile转储查看器RunSnakeRun。它允许您排序和选择,从而放大程序的相关部分。图片中矩形的大小与所用时间成正比。如果您将鼠标悬停在一个矩形上,它将突出显示表中的调用以及地图上的任何位置。双击矩形时,它会放大该部分。它将显示谁调用了该部分以及该部分调用了什么。

描述性信息非常有用。它向您显示了该位的代码,当您处理内置库调用时,该代码会很有用。它告诉要查找代码的文件和行。

还想指出,OP说的是“剖析”,但似乎他是指“时机”。请记住,程序在评测时运行速度会变慢。

如果你想做一个累积分析器,意思是连续运行函数几次并观察结果的总和。

您可以使用此cumulative_profiler装饰器:

它是python>=3.6特定的,但您可以删除非本地的,因为它可以在旧版本上工作。

import cProfile, pstats

class _ProfileFunc:
    def __init__(self, func, sort_stats_by):
        self.func =  func
        self.profile_runs = []
        self.sort_stats_by = sort_stats_by

    def __call__(self, *args, **kwargs):
        pr = cProfile.Profile()
        pr.enable()  # this is the profiling section
        retval = self.func(*args, **kwargs)
        pr.disable()

        self.profile_runs.append(pr)
        ps = pstats.Stats(*self.profile_runs).sort_stats(self.sort_stats_by)
        return retval, ps

def cumulative_profiler(amount_of_times, sort_stats_by='time'):
    def real_decorator(function):
        def wrapper(*args, **kwargs):
            nonlocal function, amount_of_times, sort_stats_by  # for python 2.x remove this row

            profiled_func = _ProfileFunc(function, sort_stats_by)
            for i in range(amount_of_times):
                retval, ps = profiled_func(*args, **kwargs)
            ps.print_stats()
            return retval  # returns the results of the function
        return wrapper

    if callable(amount_of_times):  # incase you don't want to specify the amount of times
        func = amount_of_times  # amount_of_times is the function in here
        amount_of_times = 5  # the default amount
        return real_decorator(func)
    return real_decorator

实例

剖析函数baz

import time

@cumulative_profiler
def baz():
    time.sleep(1)
    time.sleep(2)
    return 1

baz()

baz跑了5次并打印了以下内容:

         20 function calls in 15.003 seconds

   Ordered by: internal time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
       10   15.003    1.500   15.003    1.500 {built-in method time.sleep}
        5    0.000    0.000   15.003    3.001 <ipython-input-9-c89afe010372>:3(baz)
        5    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

指定次数

@cumulative_profiler(3)
def baz():
    ...

一个很好的评测模块是line_profiler(使用kernprof.py脚本调用)。它可以在这里下载。

我的理解是,cProfile只提供每个函数花费的总时间的信息。因此,单独的代码行是不定时的。这是科学计算中的一个问题,因为通常一条线会花费很多时间。而且,我记得,cProfile没有抓住我在say numpy.dot上花费的时间。

根据乔·肖(Joe Shaw)关于多线程代码无法按预期工作的回答,我认为cProfile中的runcall方法只是围绕着已配置的函数调用执行self.enable()和self.disable()调用,因此您可以简单地自己执行,并在对现有代码的干扰最小的情况下使用任何代码。