Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。

描述Python程序运行时间的好方法是什么?


当前回答

我最近创建了金枪鱼,用于可视化Python运行时和导入配置文件;这在这里可能会有所帮助。

使用安装

pip install tuna

创建运行时配置文件

python3 -m cProfile -o program.prof yourfile.py

或导入配置文件(需要Python 3.7+)

python3 -X importprofile yourfile.py 2> import.log

那就把金枪鱼放在档案里

tuna program.prof

其他回答

获取IPython笔记本上的快速配置文件统计信息。人们可以将line_profiler和memory_profile直接嵌入到笔记本中。

另一个有用的包是Pympler。它是一个强大的评测包,能够跟踪类、对象、函数、内存泄漏等。

了解了!

!pip install line_profiler
!pip install memory_profiler
!pip install pympler

加载它!

%load_ext line_profiler
%load_ext memory_profiler

使用它!


%时间

%time print('Outputs CPU time,Wall Clock time') 
#CPU times: user 2 µs, sys: 0 ns, total: 2 µs Wall time: 5.96 µs

给予:

CPU时间:CPU级执行时间systimes:系统级执行时间总计:CPU时间+系统时间墙上时间:墙上时钟时间


%计时

%timeit -r 7 -n 1000 print('Outputs execution time of the snippet') 
#1000 loops, best of 7: 7.46 ns per loop

给出给定循环次数(n)中的最佳运行次数(r)。输出系统缓存的详细信息:当代码片段被多次执行时,系统会缓存一些操作并不再执行,这可能会影响概要文件报告的准确性。


%普鲁士人

%prun -s cumulative 'Code to profile' 

给予:

函数调用数(ncall)每个函数调用有个条目(不同)每次呼叫所用时间(百分比)到函数调用为止的时间(cumtime)调用的函数/模块的名称等。。。


%记忆,记忆

%memit 'Code to profile'
#peak memory: 199.45 MiB, increment: 0.00 MiB

给予:

内存使用情况


%低压运行

#Example function
def fun():
  for i in range(10):
    print(i)

#Usage: %lprun <name_of_the_function> function
%lprun -f fun fun()

给予:

按行统计


系统大小

sys.getsizeof('code to profile')
# 64 bytes

返回对象的大小(以字节为单位)。


来自pympler的asizeof()

from pympler import asizeof
obj = [1,2,("hey","ha"),3]
print(asizeof.asizeof(obj,stats=4))

pympler.asizeof可用于调查某些Python对象消耗多少内存。与sys.getsizeof不同,asizeof递归地调整对象大小


来自pympler的跟踪器

from pympler import tracker
tr = tracker.SummaryTracker()
def fun():
  li = [1,2,3]
  di = {"ha":"haha","duh":"Umm"}
fun()
tr.print_diff()

跟踪函数的生存期。

Pympler包包含大量用于评测代码的高实用函数。这里无法涵盖所有这些。有关详细的概要文件实现,请参阅随附的文档。

Pympler文档

找到所有时间去向的最简单快捷的方法。

1. pip install snakeviz

2. python -m cProfile -o temp.dat <PROGRAM>.py

3. snakeviz temp.dat

在浏览器中绘制饼图。最大的部分是问题函数。非常简单。

在Virtaal的源代码中,有一个非常有用的类和装饰器,它可以使分析(甚至对于特定的方法/函数)非常简单。然后可以在KCacheGrind中非常舒适地查看输出。

还有一个叫做statprof的统计分析器。它是一个采样分析器,因此它为代码增加了最小的开销,并提供了基于行的(而不仅仅是基于函数的)计时。它更适合于游戏等软实时应用,但精度可能低于cProfile。

pypi中的版本有点旧,因此可以通过指定git存储库来使用pip安装:

pip install git+git://github.com/bos/statprof.py@1a33eba91899afe17a8b752c6dfdec6f05dd0c01

您可以这样运行:

import statprof

with statprof.profile():
    my_questionable_function()

另请参见https://stackoverflow.com/a/10333592/320036

想知道python脚本到底在做什么吗?输入检查外壳。Inspect Shell允许您打印/更改全局并运行函数,而不中断正在运行的脚本。现在有了自动完成和命令历史记录(仅在linux上)。Inspect Shell不是pdb样式的调试器。

https://github.com/amoffat/Inspect-Shell

你可以用它(还有你的手表)。