Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
当前回答
在Virtaal的源代码中,有一个非常有用的类和装饰器,它可以使分析(甚至对于特定的方法/函数)非常简单。然后可以在KCacheGrind中非常舒适地查看输出。
其他回答
如果你想做一个累积分析器,意思是连续运行函数几次并观察结果的总和。
您可以使用此cumulative_profiler装饰器:
它是python>=3.6特定的,但您可以删除非本地的,因为它可以在旧版本上工作。
import cProfile, pstats
class _ProfileFunc:
def __init__(self, func, sort_stats_by):
self.func = func
self.profile_runs = []
self.sort_stats_by = sort_stats_by
def __call__(self, *args, **kwargs):
pr = cProfile.Profile()
pr.enable() # this is the profiling section
retval = self.func(*args, **kwargs)
pr.disable()
self.profile_runs.append(pr)
ps = pstats.Stats(*self.profile_runs).sort_stats(self.sort_stats_by)
return retval, ps
def cumulative_profiler(amount_of_times, sort_stats_by='time'):
def real_decorator(function):
def wrapper(*args, **kwargs):
nonlocal function, amount_of_times, sort_stats_by # for python 2.x remove this row
profiled_func = _ProfileFunc(function, sort_stats_by)
for i in range(amount_of_times):
retval, ps = profiled_func(*args, **kwargs)
ps.print_stats()
return retval # returns the results of the function
return wrapper
if callable(amount_of_times): # incase you don't want to specify the amount of times
func = amount_of_times # amount_of_times is the function in here
amount_of_times = 5 # the default amount
return real_decorator(func)
return real_decorator
实例
剖析函数baz
import time
@cumulative_profiler
def baz():
time.sleep(1)
time.sleep(2)
return 1
baz()
baz跑了5次并打印了以下内容:
20 function calls in 15.003 seconds
Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)
10 15.003 1.500 15.003 1.500 {built-in method time.sleep}
5 0.000 0.000 15.003 3.001 <ipython-input-9-c89afe010372>:3(baz)
5 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
指定次数
@cumulative_profiler(3)
def baz():
...
对于像austin这样的统计分析器,不需要检测,这意味着您可以简单地使用
austin python3 my_script.py
原始输出不是很有用,但您可以将其传输到flamegraph.pl以获得该数据的火焰图表示,该火焰图提供了时间(以微秒为单位的实时)的细分。
austin python3 my_script.py | flamegraph.pl > my_script_profile.svg
或者,您也可以使用web应用程序Speedscope.app快速可视化收集的样本。如果您安装了pprof,还可以获取austin python(例如,pipx安装austin python)并使用austin2prof转换为pprof格式。
然而,如果您安装了VS Code,您可以使用Austin扩展来获得更交互式的体验,包括源代码热图、顶级函数和收集的调用堆栈
如果您想使用终端,也可以使用TUI,它也具有实时图形模式:
PyVmMonitor是一种在Python中处理评测的新工具:http://www.pyvmmonitor.com/
它具有一些独特的功能,例如
将探查器附加到正在运行的(CPython)程序Yappi集成的按需分析不同机器上的配置文件多进程支持(多处理、django…)实时采样/CPU视图(带时间范围选择)通过cProfile/配置文件集成进行确定性配置分析现有PStats结果打开DOT文件编程API访问按方法或行对样本进行分组PyDev集成PyCharm集成
注意:它是商业的,但对开源是免费的。
gprof2dot_magic公司
gprof2dot的神奇函数,用于在JupyterLab或Jupyter Notebook中将任何Python语句作为DOT图进行评测。
GitHub回购:https://github.com/mattijn/gprof2dot_magic
安装
确保您有Python包gprof2dot_magic。
pip install gprof2dot_magic
它的依赖关系gprof2dot和graphviz也将被安装
用法
要启用magic函数,首先加载gprof2dot_magic模块
%load_ext gprof2dot_magic
然后将任何行语句配置为DOT图,如下所示:
%gprof2dot print('hello world')
@Maxy对这个答案的评论对我帮助很大,我认为它应该得到自己的答案:我已经有了cProfile生成的.pstats文件,我不想用pycallgraph重新运行这些文件,所以我使用了gprof2dot,得到了很好的svgs:
$ sudo apt-get install graphviz
$ git clone https://github.com/jrfonseca/gprof2dot
$ ln -s "$PWD"/gprof2dot/gprof2dot.py ~/bin
$ cd $PROJECT_DIR
$ gprof2dot.py -f pstats profile.pstats | dot -Tsvg -o callgraph.svg
还有BLAM!
它使用点(与pycallgraph使用的相同),因此输出看起来类似。我觉得gprof2dot丢失的信息更少: