Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。

描述Python程序运行时间的好方法是什么?


当前回答

pprofile文件

line_profiler(此处已介绍)也启发了pprofile,其描述如下:

行粒度、线程感知确定性和统计纯python剖面仪

它提供了line_profiler的行粒度,是纯Python,可以用作独立命令或模块,甚至可以生成callgrind格式的文件,这些文件可以很容易地使用[k|q]cachegrind进行分析。

vprof公司

还有vprof,一个Python包,描述如下:

[…]为各种Python程序特性(如运行时间和内存使用)提供丰富的交互式可视化。

其他回答

cProfile非常适合于分析,而kcachegrind非常适合于可视化结果。中间的pyprov2calltree处理文件转换。

python -m cProfile -o script.profile script.py
pyprof2calltree -i script.profile -o script.calltree
kcachegrind script.calltree

所需的系统包:

kcachegrind(Linux)、qcachegrind(MacOs)

Ubuntu上的设置:

apt-get install kcachegrind 
pip install pyprof2calltree

结果:

PyVmMonitor是一种在Python中处理评测的新工具:http://www.pyvmmonitor.com/

它具有一些独特的功能,例如

将探查器附加到正在运行的(CPython)程序Yappi集成的按需分析不同机器上的配置文件多进程支持(多处理、django…)实时采样/CPU视图(带时间范围选择)通过cProfile/配置文件集成进行确定性配置分析现有PStats结果打开DOT文件编程API访问按方法或行对样本进行分组PyDev集成PyCharm集成

注意:它是商业的,但对开源是免费的。

Python包括一个名为cProfile的分析器。它不仅给出了总的运行时间,而且还分别计算了每个函数的时间,并告诉每个函数被调用了多少次,从而很容易确定应该在哪里进行优化。

您可以从代码内部或从解释器调用它,如下所示:

import cProfile
cProfile.run('foo()')

更有用的是,您可以在运行脚本时调用cProfile:

python -m cProfile myscript.py

为了更简单,我制作了一个名为“profile.bat”的小批处理文件:

python -m cProfile %1

所以我要做的就是跑:

profile euler048.py

我得到了这个:

1007 function calls in 0.061 CPU seconds

Ordered by: standard name
ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    1    0.000    0.000    0.061    0.061 <string>:1(<module>)
 1000    0.051    0.000    0.051    0.000 euler048.py:2(<lambda>)
    1    0.005    0.005    0.061    0.061 euler048.py:2(<module>)
    1    0.000    0.000    0.061    0.061 {execfile}
    1    0.002    0.002    0.053    0.053 {map}
    1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler objects}
    1    0.000    0.000    0.000    0.000 {range}
    1    0.003    0.003    0.003    0.003 {sum}

编辑:更新了2013年PyCon视频资源的链接,标题为Python评测也可以通过YouTube。

一个很好的评测模块是line_profiler(使用kernprof.py脚本调用)。它可以在这里下载。

我的理解是,cProfile只提供每个函数花费的总时间的信息。因此,单独的代码行是不定时的。这是科学计算中的一个问题,因为通常一条线会花费很多时间。而且,我记得,cProfile没有抓住我在say numpy.dot上花费的时间。

获取IPython笔记本上的快速配置文件统计信息。人们可以将line_profiler和memory_profile直接嵌入到笔记本中。

另一个有用的包是Pympler。它是一个强大的评测包,能够跟踪类、对象、函数、内存泄漏等。

了解了!

!pip install line_profiler
!pip install memory_profiler
!pip install pympler

加载它!

%load_ext line_profiler
%load_ext memory_profiler

使用它!


%时间

%time print('Outputs CPU time,Wall Clock time') 
#CPU times: user 2 µs, sys: 0 ns, total: 2 µs Wall time: 5.96 µs

给予:

CPU时间:CPU级执行时间systimes:系统级执行时间总计:CPU时间+系统时间墙上时间:墙上时钟时间


%计时

%timeit -r 7 -n 1000 print('Outputs execution time of the snippet') 
#1000 loops, best of 7: 7.46 ns per loop

给出给定循环次数(n)中的最佳运行次数(r)。输出系统缓存的详细信息:当代码片段被多次执行时,系统会缓存一些操作并不再执行,这可能会影响概要文件报告的准确性。


%普鲁士人

%prun -s cumulative 'Code to profile' 

给予:

函数调用数(ncall)每个函数调用有个条目(不同)每次呼叫所用时间(百分比)到函数调用为止的时间(cumtime)调用的函数/模块的名称等。。。


%记忆,记忆

%memit 'Code to profile'
#peak memory: 199.45 MiB, increment: 0.00 MiB

给予:

内存使用情况


%低压运行

#Example function
def fun():
  for i in range(10):
    print(i)

#Usage: %lprun <name_of_the_function> function
%lprun -f fun fun()

给予:

按行统计


系统大小

sys.getsizeof('code to profile')
# 64 bytes

返回对象的大小(以字节为单位)。


来自pympler的asizeof()

from pympler import asizeof
obj = [1,2,("hey","ha"),3]
print(asizeof.asizeof(obj,stats=4))

pympler.asizeof可用于调查某些Python对象消耗多少内存。与sys.getsizeof不同,asizeof递归地调整对象大小


来自pympler的跟踪器

from pympler import tracker
tr = tracker.SummaryTracker()
def fun():
  li = [1,2,3]
  di = {"ha":"haha","duh":"Umm"}
fun()
tr.print_diff()

跟踪函数的生存期。

Pympler包包含大量用于评测代码的高实用函数。这里无法涵盖所有这些。有关详细的概要文件实现,请参阅随附的文档。

Pympler文档