Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。

描述Python程序运行时间的好方法是什么?


当前回答

这取决于您希望从分析中看到什么。简单的时间度量可以由(bash)给出。

time python python_prog.py

甚至“/usr/bin/time”也可以使用“--verbose”标志输出详细的度量。

为了检查每个函数给出的时间度量,并更好地了解在函数上花费的时间,可以使用python中的内置cProfile。

进入更详细的指标,如绩效,时间不是唯一的指标。您可以担心内存、线程等问题。分析选项:line_profiler是另一个通常用于逐行查找定时度量的分析器。2.memory_profiler是一个评测内存使用情况的工具。3.heapy(来自项目Guppy)描述如何使用堆中的对象。

这些是我常用的一些。但如果你想了解更多,试试看这本书这是一本非常好的书,讲述了如何从性能出发。您可以转到使用Cython和JIT(实时)编译的python的高级主题。

其他回答

根据乔·肖(Joe Shaw)关于多线程代码无法按预期工作的回答,我认为cProfile中的runcall方法只是围绕着已配置的函数调用执行self.enable()和self.disable()调用,因此您可以简单地自己执行,并在对现有代码的干扰最小的情况下使用任何代码。

Scalene是一个新的python分析器,它涵盖了许多用例,对性能的影响最小:

https://github.com/plasma-umass/scalene

它可以在非常精细的水平上评测CPU、GPU和内存利用率。它还特别支持多线程/并行化的python代码。

python wiki是一个用于分析资源的绝佳页面:http://wiki.python.org/moin/PythonSpeed/PerformanceTips#Profiling_Code

python文档也是如此:http://docs.python.org/library/profile.html

如Chris Lawlor所示,cProfile是一个很棒的工具,可以很容易地打印到屏幕上:

python -m cProfile -s time mine.py <args>

或存档:

python -m cProfile -o output.file mine.py <args>

PS>如果您使用的是Ubuntu,请确保安装python配置文件

apt-get install python-profiler 

如果输出到文件,可以使用以下工具获得良好的可视化效果

PyCallGraph:创建调用图图像的工具安装:

 pip install pycallgraph

run:

 pycallgraph mine.py args

视图:

 gimp pycallgraph.png

你可以使用任何你喜欢的方式来查看png文件,我使用了gimp不幸的是,我经常

dot:graph对于cairo渲染器位图太大。缩放0.257079以适合

这使我的图像变得难以使用。所以我通常创建svg文件:

pycallgraph -f svg -o pycallgraph.svg mine.py <args>

PS>确保安装graphviz(提供点程序):

pip install graphviz

使用gprof2dot通过@maxy/@quodlibetor绘制替代图形:

pip install gprof2dot
python -m cProfile -o profile.pstats mine.py
gprof2dot -f pstats profile.pstats | dot -Tsvg -o mine.svg

找到所有时间去向的最简单快捷的方法。

1. pip install snakeviz

2. python -m cProfile -o temp.dat <PROGRAM>.py

3. snakeviz temp.dat

在浏览器中绘制饼图。最大的部分是问题函数。非常简单。

我刚刚从pypref_time中开发了自己的分析器:

https://github.com/modaresimr/auto_profiler

更新版本2

安装:

pip install auto_profiler

快速入门:

from auto_profiler import Profiler

with Profiler():
    your_function()

在Jupyter中使用,可以实时查看已用时间

更新版本1

通过添加装饰器,它将显示一个耗时的函数树

@探查器(深度=4)

Install by: pip install auto_profiler

实例

import time # line number 1
import random

from auto_profiler import Profiler, Tree

def f1():
    mysleep(.6+random.random())

def mysleep(t):
    time.sleep(t)

def fact(i):
    f1()
    if(i==1):
        return 1
    return i*fact(i-1)

def main():
    for i in range(5):
        f1()

    fact(3)


with Profiler(depth=4):
    main()

示例输出


Time   [Hits * PerHit] Function name [Called from] [function location]
-----------------------------------------------------------------------
8.974s [1 * 8.974]  main  [auto-profiler/profiler.py:267]  [/test/t2.py:30]
├── 5.954s [5 * 1.191]  f1  [/test/t2.py:34]  [/test/t2.py:14]
│   └── 5.954s [5 * 1.191]  mysleep  [/test/t2.py:15]  [/test/t2.py:17]
│       └── 5.954s [5 * 1.191]  <time.sleep>
|
|
|   # The rest is for the example recursive function call fact
└── 3.020s [1 * 3.020]  fact  [/test/t2.py:36]  [/test/t2.py:20]
    ├── 0.849s [1 * 0.849]  f1  [/test/t2.py:21]  [/test/t2.py:14]
    │   └── 0.849s [1 * 0.849]  mysleep  [/test/t2.py:15]  [/test/t2.py:17]
    │       └── 0.849s [1 * 0.849]  <time.sleep>
    └── 2.171s [1 * 2.171]  fact  [/test/t2.py:24]  [/test/t2.py:20]
        ├── 1.552s [1 * 1.552]  f1  [/test/t2.py:21]  [/test/t2.py:14]
        │   └── 1.552s [1 * 1.552]  mysleep  [/test/t2.py:15]  [/test/t2.py:17]
        └── 0.619s [1 * 0.619]  fact  [/test/t2.py:24]  [/test/t2.py:20]
            └── 0.619s [1 * 0.619]  f1  [/test/t2.py:21]  [/test/t2.py:14]