Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。

描述Python程序运行时间的好方法是什么?


当前回答

Scalene是一个新的python分析器,它涵盖了许多用例,对性能的影响最小:

https://github.com/plasma-umass/scalene

它可以在非常精细的水平上评测CPU、GPU和内存利用率。它还特别支持多线程/并行化的python代码。

其他回答

有很多很好的答案,但它们要么使用命令行,要么使用一些外部程序来分析和/或排序结果。

我真的错过了在IDE(eclipsePyDev)中使用而不接触命令行或安装任何东西的方法。所以就在这里。

无命令行分析

def count():
    from math import sqrt
    for x in range(10**5):
        sqrt(x)

if __name__ == '__main__':
    import cProfile, pstats
    cProfile.run("count()", "{}.profile".format(__file__))
    s = pstats.Stats("{}.profile".format(__file__))
    s.strip_dirs()
    s.sort_stats("time").print_stats(10)

有关更多信息,请参阅文档或其他答案。

Python包括一个名为cProfile的分析器。它不仅给出了总的运行时间,而且还分别计算了每个函数的时间,并告诉每个函数被调用了多少次,从而很容易确定应该在哪里进行优化。

您可以从代码内部或从解释器调用它,如下所示:

import cProfile
cProfile.run('foo()')

更有用的是,您可以在运行脚本时调用cProfile:

python -m cProfile myscript.py

为了更简单,我制作了一个名为“profile.bat”的小批处理文件:

python -m cProfile %1

所以我要做的就是跑:

profile euler048.py

我得到了这个:

1007 function calls in 0.061 CPU seconds

Ordered by: standard name
ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    1    0.000    0.000    0.061    0.061 <string>:1(<module>)
 1000    0.051    0.000    0.051    0.000 euler048.py:2(<lambda>)
    1    0.005    0.005    0.061    0.061 euler048.py:2(<module>)
    1    0.000    0.000    0.061    0.061 {execfile}
    1    0.002    0.002    0.053    0.053 {map}
    1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler objects}
    1    0.000    0.000    0.000    0.000 {range}
    1    0.003    0.003    0.003    0.003 {sum}

编辑:更新了2013年PyCon视频资源的链接,标题为Python评测也可以通过YouTube。

如果你想做一个累积分析器,意思是连续运行函数几次并观察结果的总和。

您可以使用此cumulative_profiler装饰器:

它是python>=3.6特定的,但您可以删除非本地的,因为它可以在旧版本上工作。

import cProfile, pstats

class _ProfileFunc:
    def __init__(self, func, sort_stats_by):
        self.func =  func
        self.profile_runs = []
        self.sort_stats_by = sort_stats_by

    def __call__(self, *args, **kwargs):
        pr = cProfile.Profile()
        pr.enable()  # this is the profiling section
        retval = self.func(*args, **kwargs)
        pr.disable()

        self.profile_runs.append(pr)
        ps = pstats.Stats(*self.profile_runs).sort_stats(self.sort_stats_by)
        return retval, ps

def cumulative_profiler(amount_of_times, sort_stats_by='time'):
    def real_decorator(function):
        def wrapper(*args, **kwargs):
            nonlocal function, amount_of_times, sort_stats_by  # for python 2.x remove this row

            profiled_func = _ProfileFunc(function, sort_stats_by)
            for i in range(amount_of_times):
                retval, ps = profiled_func(*args, **kwargs)
            ps.print_stats()
            return retval  # returns the results of the function
        return wrapper

    if callable(amount_of_times):  # incase you don't want to specify the amount of times
        func = amount_of_times  # amount_of_times is the function in here
        amount_of_times = 5  # the default amount
        return real_decorator(func)
    return real_decorator

实例

剖析函数baz

import time

@cumulative_profiler
def baz():
    time.sleep(1)
    time.sleep(2)
    return 1

baz()

baz跑了5次并打印了以下内容:

         20 function calls in 15.003 seconds

   Ordered by: internal time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
       10   15.003    1.500   15.003    1.500 {built-in method time.sleep}
        5    0.000    0.000   15.003    3.001 <ipython-input-9-c89afe010372>:3(baz)
        5    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

指定次数

@cumulative_profiler(3)
def baz():
    ...

我发现,如果您不想使用命令行选项,该功能快速且易于使用。

要使用,只需在要分析的每个函数上方添加@profile。

def profile(fnc):
    """
    Profiles any function in following class just by adding @profile above function
    """
    import cProfile, pstats, io
    def inner (*args, **kwargs):
        pr = cProfile.Profile()
        pr.enable()
        retval = fnc (*args, **kwargs)
        pr.disable()
        s = io.StringIO()
        sortby = 'cumulative'   #Ordered
        ps = pstats.Stats(pr,stream=s).strip_dirs().sort_stats(sortby)
        n=10                    #reduced the list to be monitored
        ps.print_stats(n)
        #ps.dump_stats("profile.prof")
        print(s.getvalue())
        return retval
    return inner 

每个函数的输出如下

   Ordered by: cumulative time
   List reduced from 38 to 10 due to restriction <10>

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.002    0.002 3151212474.py:37(get_pdf_page_count)
        1    0.000    0.000    0.002    0.002 fitz.py:3604(__init__)
        1    0.001    0.001    0.001    0.001 {built-in method fitz._fitz.new_Document}
        1    0.000    0.000    0.000    0.000 fitz.py:5207(__del__)
        1    0.000    0.000    0.000    0.000 {built-in method fitz._fitz.delete_Document}
        1    0.000    0.000    0.000    0.000 fitz.py:4816(init_doc)
        1    0.000    0.000    0.000    0.000 fitz.py:5197(_reset_page_refs)
        1    0.000    0.000    0.000    0.000 fitz.py:4821(<listcomp>)
       11    0.000    0.000    0.000    0.000 fitz.py:4054(_getMetadata)
        1    0.000    0.000    0.000    0.000 weakref.py:241(values)

在Virtaal的源代码中,有一个非常有用的类和装饰器,它可以使分析(甚至对于特定的方法/函数)非常简单。然后可以在KCacheGrind中非常舒适地查看输出。