Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
当前回答
有很多很好的答案,但它们要么使用命令行,要么使用一些外部程序来分析和/或排序结果。
我真的错过了在IDE(eclipsePyDev)中使用而不接触命令行或安装任何东西的方法。所以就在这里。
无命令行分析
def count():
from math import sqrt
for x in range(10**5):
sqrt(x)
if __name__ == '__main__':
import cProfile, pstats
cProfile.run("count()", "{}.profile".format(__file__))
s = pstats.Stats("{}.profile".format(__file__))
s.strip_dirs()
s.sort_stats("time").print_stats(10)
有关更多信息,请参阅文档或其他答案。
其他回答
cProfile非常适合快速分析,但大多数时候它都以错误结束。函数runctx通过正确初始化环境和变量来解决这个问题,希望它对某些人有用:
import cProfile
cProfile.runctx('foo()', None, locals())
想知道python脚本到底在做什么吗?输入检查外壳。Inspect Shell允许您打印/更改全局并运行函数,而不中断正在运行的脚本。现在有了自动完成和命令历史记录(仅在linux上)。Inspect Shell不是pdb样式的调试器。
https://github.com/amoffat/Inspect-Shell
你可以用它(还有你的手表)。
找到所有时间去向的最简单快捷的方法。
1. pip install snakeviz
2. python -m cProfile -o temp.dat <PROGRAM>.py
3. snakeviz temp.dat
在浏览器中绘制饼图。最大的部分是问题函数。非常简单。
pprofile文件
line_profiler(此处已介绍)也启发了pprofile,其描述如下:
行粒度、线程感知确定性和统计纯python剖面仪
它提供了line_profiler的行粒度,是纯Python,可以用作独立命令或模块,甚至可以生成callgrind格式的文件,这些文件可以很容易地使用[k|q]cachegrind进行分析。
vprof公司
还有vprof,一个Python包,描述如下:
[…]为各种Python程序特性(如运行时间和内存使用)提供丰富的交互式可视化。
我发现cprofiler和其他资源更多地用于优化目的,而不是调试。
我制作了自己的测试模块,用于简单的python脚本速度测试。(在我的例子中,使用ScriptProfilerPy测试了1K+行py文件,并在几分钟内将代码速度提高了10倍。
模块ScriptProfilerPy()将运行代码,并向其添加时间戳。我把模块放在这里:https://github.com/Lucas-BLP/ScriptProfilerPy
Use:
from speed_testpy import ScriptProfilerPy
ScriptProfilerPy("path_to_your_script_to_test.py").Profiler()
输出: