Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。

描述Python程序运行时间的好方法是什么?


当前回答

cProfile非常适合于分析,而kcachegrind非常适合于可视化结果。中间的pyprov2calltree处理文件转换。

python -m cProfile -o script.profile script.py
pyprof2calltree -i script.profile -o script.calltree
kcachegrind script.calltree

所需的系统包:

kcachegrind(Linux)、qcachegrind(MacOs)

Ubuntu上的设置:

apt-get install kcachegrind 
pip install pyprof2calltree

结果:

其他回答

根据乔·肖(Joe Shaw)关于多线程代码无法按预期工作的回答,我认为cProfile中的runcall方法只是围绕着已配置的函数调用执行self.enable()和self.disable()调用,因此您可以简单地自己执行,并在对现有代码的干扰最小的情况下使用任何代码。

想知道python脚本到底在做什么吗?输入检查外壳。Inspect Shell允许您打印/更改全局并运行函数,而不中断正在运行的脚本。现在有了自动完成和命令历史记录(仅在linux上)。Inspect Shell不是pdb样式的调试器。

https://github.com/amoffat/Inspect-Shell

你可以用它(还有你的手表)。

我刚刚从pypref_time中开发了自己的分析器:

https://github.com/modaresimr/auto_profiler

更新版本2

安装:

pip install auto_profiler

快速入门:

from auto_profiler import Profiler

with Profiler():
    your_function()

在Jupyter中使用,可以实时查看已用时间

更新版本1

通过添加装饰器,它将显示一个耗时的函数树

@探查器(深度=4)

Install by: pip install auto_profiler

实例

import time # line number 1
import random

from auto_profiler import Profiler, Tree

def f1():
    mysleep(.6+random.random())

def mysleep(t):
    time.sleep(t)

def fact(i):
    f1()
    if(i==1):
        return 1
    return i*fact(i-1)

def main():
    for i in range(5):
        f1()

    fact(3)


with Profiler(depth=4):
    main()

示例输出


Time   [Hits * PerHit] Function name [Called from] [function location]
-----------------------------------------------------------------------
8.974s [1 * 8.974]  main  [auto-profiler/profiler.py:267]  [/test/t2.py:30]
├── 5.954s [5 * 1.191]  f1  [/test/t2.py:34]  [/test/t2.py:14]
│   └── 5.954s [5 * 1.191]  mysleep  [/test/t2.py:15]  [/test/t2.py:17]
│       └── 5.954s [5 * 1.191]  <time.sleep>
|
|
|   # The rest is for the example recursive function call fact
└── 3.020s [1 * 3.020]  fact  [/test/t2.py:36]  [/test/t2.py:20]
    ├── 0.849s [1 * 0.849]  f1  [/test/t2.py:21]  [/test/t2.py:14]
    │   └── 0.849s [1 * 0.849]  mysleep  [/test/t2.py:15]  [/test/t2.py:17]
    │       └── 0.849s [1 * 0.849]  <time.sleep>
    └── 2.171s [1 * 2.171]  fact  [/test/t2.py:24]  [/test/t2.py:20]
        ├── 1.552s [1 * 1.552]  f1  [/test/t2.py:21]  [/test/t2.py:14]
        │   └── 1.552s [1 * 1.552]  mysleep  [/test/t2.py:15]  [/test/t2.py:17]
        └── 0.619s [1 * 0.619]  fact  [/test/t2.py:24]  [/test/t2.py:20]
            └── 0.619s [1 * 0.619]  f1  [/test/t2.py:21]  [/test/t2.py:14]

最近,我为PyCharm创建了一个插件,使用该插件,您可以在PyCharm编辑器中轻松分析和可视化line_profiler的结果。

linepfiler在其他答案中也提到过,它是一个很好的工具,可以准确分析python解释器在某些行中花费了多少时间。

我创建的PyCharm插件可以在这里找到:https://plugins.jetbrains.com/plugin/16536-line-profiler

它需要一个python环境中的助手包,名为line profiler pycharm,可以使用pip或插件本身安装。

在PyCharm中安装插件后:

用line_profiler_pycharm.profile装饰器装饰您想要评测的任何函数使用“轮廓线”跑步器跑步

结果截图:

PyVmMonitor是一种在Python中处理评测的新工具:http://www.pyvmmonitor.com/

它具有一些独特的功能,例如

将探查器附加到正在运行的(CPython)程序Yappi集成的按需分析不同机器上的配置文件多进程支持(多处理、django…)实时采样/CPU视图(带时间范围选择)通过cProfile/配置文件集成进行确定性配置分析现有PStats结果打开DOT文件编程API访问按方法或行对样本进行分组PyDev集成PyCharm集成

注意:它是商业的,但对开源是免费的。