Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。

描述Python程序运行时间的好方法是什么?


当前回答

值得指出的是,使用探查器仅在主线程上有效(默认情况下),如果使用它们,您将无法从其他线程获得任何信息。这可能有点棘手,因为探查器文档中完全没有提到它。

如果您还想评测线程,那么您需要查看文档中的threading.setprofile()函数。

您也可以创建自己的线程.Thread子类:

class ProfiledThread(threading.Thread):
    # Overrides threading.Thread.run()
    def run(self):
        profiler = cProfile.Profile()
        try:
            return profiler.runcall(threading.Thread.run, self)
        finally:
            profiler.dump_stats('myprofile-%d.profile' % (self.ident,))

并使用ProfiledThread类而不是标准类。它可能会给你更多的灵活性,但我不确定它是否值得,特别是如果你使用的是不使用你的类的第三方代码。

其他回答

我发现,如果您不想使用命令行选项,该功能快速且易于使用。

要使用,只需在要分析的每个函数上方添加@profile。

def profile(fnc):
    """
    Profiles any function in following class just by adding @profile above function
    """
    import cProfile, pstats, io
    def inner (*args, **kwargs):
        pr = cProfile.Profile()
        pr.enable()
        retval = fnc (*args, **kwargs)
        pr.disable()
        s = io.StringIO()
        sortby = 'cumulative'   #Ordered
        ps = pstats.Stats(pr,stream=s).strip_dirs().sort_stats(sortby)
        n=10                    #reduced the list to be monitored
        ps.print_stats(n)
        #ps.dump_stats("profile.prof")
        print(s.getvalue())
        return retval
    return inner 

每个函数的输出如下

   Ordered by: cumulative time
   List reduced from 38 to 10 due to restriction <10>

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.002    0.002 3151212474.py:37(get_pdf_page_count)
        1    0.000    0.000    0.002    0.002 fitz.py:3604(__init__)
        1    0.001    0.001    0.001    0.001 {built-in method fitz._fitz.new_Document}
        1    0.000    0.000    0.000    0.000 fitz.py:5207(__del__)
        1    0.000    0.000    0.000    0.000 {built-in method fitz._fitz.delete_Document}
        1    0.000    0.000    0.000    0.000 fitz.py:4816(init_doc)
        1    0.000    0.000    0.000    0.000 fitz.py:5197(_reset_page_refs)
        1    0.000    0.000    0.000    0.000 fitz.py:4821(<listcomp>)
       11    0.000    0.000    0.000    0.000 fitz.py:4054(_getMetadata)
        1    0.000    0.000    0.000    0.000 weakref.py:241(values)

如果你想做一个累积分析器,意思是连续运行函数几次并观察结果的总和。

您可以使用此cumulative_profiler装饰器:

它是python>=3.6特定的,但您可以删除非本地的,因为它可以在旧版本上工作。

import cProfile, pstats

class _ProfileFunc:
    def __init__(self, func, sort_stats_by):
        self.func =  func
        self.profile_runs = []
        self.sort_stats_by = sort_stats_by

    def __call__(self, *args, **kwargs):
        pr = cProfile.Profile()
        pr.enable()  # this is the profiling section
        retval = self.func(*args, **kwargs)
        pr.disable()

        self.profile_runs.append(pr)
        ps = pstats.Stats(*self.profile_runs).sort_stats(self.sort_stats_by)
        return retval, ps

def cumulative_profiler(amount_of_times, sort_stats_by='time'):
    def real_decorator(function):
        def wrapper(*args, **kwargs):
            nonlocal function, amount_of_times, sort_stats_by  # for python 2.x remove this row

            profiled_func = _ProfileFunc(function, sort_stats_by)
            for i in range(amount_of_times):
                retval, ps = profiled_func(*args, **kwargs)
            ps.print_stats()
            return retval  # returns the results of the function
        return wrapper

    if callable(amount_of_times):  # incase you don't want to specify the amount of times
        func = amount_of_times  # amount_of_times is the function in here
        amount_of_times = 5  # the default amount
        return real_decorator(func)
    return real_decorator

实例

剖析函数baz

import time

@cumulative_profiler
def baz():
    time.sleep(1)
    time.sleep(2)
    return 1

baz()

baz跑了5次并打印了以下内容:

         20 function calls in 15.003 seconds

   Ordered by: internal time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
       10   15.003    1.500   15.003    1.500 {built-in method time.sleep}
        5    0.000    0.000   15.003    3.001 <ipython-input-9-c89afe010372>:3(baz)
        5    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

指定次数

@cumulative_profiler(3)
def baz():
    ...

gprof2dot_magic公司

gprof2dot的神奇函数,用于在JupyterLab或Jupyter Notebook中将任何Python语句作为DOT图进行评测。

GitHub回购:https://github.com/mattijn/gprof2dot_magic

安装

确保您有Python包gprof2dot_magic。

pip install gprof2dot_magic

它的依赖关系gprof2dot和graphviz也将被安装

用法

要启用magic函数,首先加载gprof2dot_magic模块

%load_ext gprof2dot_magic

然后将任何行语句配置为DOT图,如下所示:

%gprof2dot print('hello world')

python wiki是一个用于分析资源的绝佳页面:http://wiki.python.org/moin/PythonSpeed/PerformanceTips#Profiling_Code

python文档也是如此:http://docs.python.org/library/profile.html

如Chris Lawlor所示,cProfile是一个很棒的工具,可以很容易地打印到屏幕上:

python -m cProfile -s time mine.py <args>

或存档:

python -m cProfile -o output.file mine.py <args>

PS>如果您使用的是Ubuntu,请确保安装python配置文件

apt-get install python-profiler 

如果输出到文件,可以使用以下工具获得良好的可视化效果

PyCallGraph:创建调用图图像的工具安装:

 pip install pycallgraph

run:

 pycallgraph mine.py args

视图:

 gimp pycallgraph.png

你可以使用任何你喜欢的方式来查看png文件,我使用了gimp不幸的是,我经常

dot:graph对于cairo渲染器位图太大。缩放0.257079以适合

这使我的图像变得难以使用。所以我通常创建svg文件:

pycallgraph -f svg -o pycallgraph.svg mine.py <args>

PS>确保安装graphviz(提供点程序):

pip install graphviz

使用gprof2dot通过@maxy/@quodlibetor绘制替代图形:

pip install gprof2dot
python -m cProfile -o profile.pstats mine.py
gprof2dot -f pstats profile.pstats | dot -Tsvg -o mine.svg

我发现cprofiler和其他资源更多地用于优化目的,而不是调试。

我制作了自己的测试模块,用于简单的python脚本速度测试。(在我的例子中,使用ScriptProfilerPy测试了1K+行py文件,并在几分钟内将代码速度提高了10倍。

模块ScriptProfilerPy()将运行代码,并向其添加时间戳。我把模块放在这里:https://github.com/Lucas-BLP/ScriptProfilerPy

Use:

from speed_testpy import ScriptProfilerPy

ScriptProfilerPy("path_to_your_script_to_test.py").Profiler()

输出: