Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
当前回答
获取IPython笔记本上的快速配置文件统计信息。人们可以将line_profiler和memory_profile直接嵌入到笔记本中。
另一个有用的包是Pympler。它是一个强大的评测包,能够跟踪类、对象、函数、内存泄漏等。
了解了!
!pip install line_profiler
!pip install memory_profiler
!pip install pympler
加载它!
%load_ext line_profiler
%load_ext memory_profiler
使用它!
%时间
%time print('Outputs CPU time,Wall Clock time')
#CPU times: user 2 µs, sys: 0 ns, total: 2 µs Wall time: 5.96 µs
给予:
CPU时间:CPU级执行时间systimes:系统级执行时间总计:CPU时间+系统时间墙上时间:墙上时钟时间
%计时
%timeit -r 7 -n 1000 print('Outputs execution time of the snippet')
#1000 loops, best of 7: 7.46 ns per loop
给出给定循环次数(n)中的最佳运行次数(r)。输出系统缓存的详细信息:当代码片段被多次执行时,系统会缓存一些操作并不再执行,这可能会影响概要文件报告的准确性。
%普鲁士人
%prun -s cumulative 'Code to profile'
给予:
函数调用数(ncall)每个函数调用有个条目(不同)每次呼叫所用时间(百分比)到函数调用为止的时间(cumtime)调用的函数/模块的名称等。。。
%记忆,记忆
%memit 'Code to profile'
#peak memory: 199.45 MiB, increment: 0.00 MiB
给予:
内存使用情况
%低压运行
#Example function
def fun():
for i in range(10):
print(i)
#Usage: %lprun <name_of_the_function> function
%lprun -f fun fun()
给予:
按行统计
系统大小
sys.getsizeof('code to profile')
# 64 bytes
返回对象的大小(以字节为单位)。
来自pympler的asizeof()
from pympler import asizeof
obj = [1,2,("hey","ha"),3]
print(asizeof.asizeof(obj,stats=4))
pympler.asizeof可用于调查某些Python对象消耗多少内存。与sys.getsizeof不同,asizeof递归地调整对象大小
来自pympler的跟踪器
from pympler import tracker
tr = tracker.SummaryTracker()
def fun():
li = [1,2,3]
di = {"ha":"haha","duh":"Umm"}
fun()
tr.print_diff()
跟踪函数的生存期。
Pympler包包含大量用于评测代码的高实用函数。这里无法涵盖所有这些。有关详细的概要文件实现,请参阅随附的文档。
Pympler文档
其他回答
python wiki是一个用于分析资源的绝佳页面:http://wiki.python.org/moin/PythonSpeed/PerformanceTips#Profiling_Code
python文档也是如此:http://docs.python.org/library/profile.html
如Chris Lawlor所示,cProfile是一个很棒的工具,可以很容易地打印到屏幕上:
python -m cProfile -s time mine.py <args>
或存档:
python -m cProfile -o output.file mine.py <args>
PS>如果您使用的是Ubuntu,请确保安装python配置文件
apt-get install python-profiler
如果输出到文件,可以使用以下工具获得良好的可视化效果
PyCallGraph:创建调用图图像的工具安装:
pip install pycallgraph
run:
pycallgraph mine.py args
视图:
gimp pycallgraph.png
你可以使用任何你喜欢的方式来查看png文件,我使用了gimp不幸的是,我经常
dot:graph对于cairo渲染器位图太大。缩放0.257079以适合
这使我的图像变得难以使用。所以我通常创建svg文件:
pycallgraph -f svg -o pycallgraph.svg mine.py <args>
PS>确保安装graphviz(提供点程序):
pip install graphviz
使用gprof2dot通过@maxy/@quodlibetor绘制替代图形:
pip install gprof2dot
python -m cProfile -o profile.pstats mine.py
gprof2dot -f pstats profile.pstats | dot -Tsvg -o mine.svg
Python包括一个名为cProfile的分析器。它不仅给出了总的运行时间,而且还分别计算了每个函数的时间,并告诉每个函数被调用了多少次,从而很容易确定应该在哪里进行优化。
您可以从代码内部或从解释器调用它,如下所示:
import cProfile
cProfile.run('foo()')
更有用的是,您可以在运行脚本时调用cProfile:
python -m cProfile myscript.py
为了更简单,我制作了一个名为“profile.bat”的小批处理文件:
python -m cProfile %1
所以我要做的就是跑:
profile euler048.py
我得到了这个:
1007 function calls in 0.061 CPU seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.061 0.061 <string>:1(<module>)
1000 0.051 0.000 0.051 0.000 euler048.py:2(<lambda>)
1 0.005 0.005 0.061 0.061 euler048.py:2(<module>)
1 0.000 0.000 0.061 0.061 {execfile}
1 0.002 0.002 0.053 0.053 {map}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler objects}
1 0.000 0.000 0.000 0.000 {range}
1 0.003 0.003 0.003 0.003 {sum}
编辑:更新了2013年PyCon视频资源的链接,标题为Python评测也可以通过YouTube。
一个很好的评测模块是line_profiler(使用kernprof.py脚本调用)。它可以在这里下载。
我的理解是,cProfile只提供每个函数花费的总时间的信息。因此,单独的代码行是不定时的。这是科学计算中的一个问题,因为通常一条线会花费很多时间。而且,我记得,cProfile没有抓住我在say numpy.dot上花费的时间。
有很多很好的答案,但它们要么使用命令行,要么使用一些外部程序来分析和/或排序结果。
我真的错过了在IDE(eclipsePyDev)中使用而不接触命令行或安装任何东西的方法。所以就在这里。
无命令行分析
def count():
from math import sqrt
for x in range(10**5):
sqrt(x)
if __name__ == '__main__':
import cProfile, pstats
cProfile.run("count()", "{}.profile".format(__file__))
s = pstats.Stats("{}.profile".format(__file__))
s.strip_dirs()
s.sort_stats("time").print_stats(10)
有关更多信息,请参阅文档或其他答案。
cProfile非常适合快速分析,但大多数时候它都以错误结束。函数runctx通过正确初始化环境和变量来解决这个问题,希望它对某些人有用:
import cProfile
cProfile.runctx('foo()', None, locals())