Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
当前回答
我发现,如果您不想使用命令行选项,该功能快速且易于使用。
要使用,只需在要分析的每个函数上方添加@profile。
def profile(fnc):
"""
Profiles any function in following class just by adding @profile above function
"""
import cProfile, pstats, io
def inner (*args, **kwargs):
pr = cProfile.Profile()
pr.enable()
retval = fnc (*args, **kwargs)
pr.disable()
s = io.StringIO()
sortby = 'cumulative' #Ordered
ps = pstats.Stats(pr,stream=s).strip_dirs().sort_stats(sortby)
n=10 #reduced the list to be monitored
ps.print_stats(n)
#ps.dump_stats("profile.prof")
print(s.getvalue())
return retval
return inner
每个函数的输出如下
Ordered by: cumulative time
List reduced from 38 to 10 due to restriction <10>
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.002 0.002 3151212474.py:37(get_pdf_page_count)
1 0.000 0.000 0.002 0.002 fitz.py:3604(__init__)
1 0.001 0.001 0.001 0.001 {built-in method fitz._fitz.new_Document}
1 0.000 0.000 0.000 0.000 fitz.py:5207(__del__)
1 0.000 0.000 0.000 0.000 {built-in method fitz._fitz.delete_Document}
1 0.000 0.000 0.000 0.000 fitz.py:4816(init_doc)
1 0.000 0.000 0.000 0.000 fitz.py:5197(_reset_page_refs)
1 0.000 0.000 0.000 0.000 fitz.py:4821(<listcomp>)
11 0.000 0.000 0.000 0.000 fitz.py:4054(_getMetadata)
1 0.000 0.000 0.000 0.000 weakref.py:241(values)
其他回答
cProfile非常适合于分析,而kcachegrind非常适合于可视化结果。中间的pyprov2calltree处理文件转换。
python -m cProfile -o script.profile script.py
pyprof2calltree -i script.profile -o script.calltree
kcachegrind script.calltree
所需的系统包:
kcachegrind(Linux)、qcachegrind(MacOs)
Ubuntu上的设置:
apt-get install kcachegrind
pip install pyprof2calltree
结果:
值得指出的是,使用探查器仅在主线程上有效(默认情况下),如果使用它们,您将无法从其他线程获得任何信息。这可能有点棘手,因为探查器文档中完全没有提到它。
如果您还想评测线程,那么您需要查看文档中的threading.setprofile()函数。
您也可以创建自己的线程.Thread子类:
class ProfiledThread(threading.Thread):
# Overrides threading.Thread.run()
def run(self):
profiler = cProfile.Profile()
try:
return profiler.runcall(threading.Thread.run, self)
finally:
profiler.dump_stats('myprofile-%d.profile' % (self.ident,))
并使用ProfiledThread类而不是标准类。它可能会给你更多的灵活性,但我不确定它是否值得,特别是如果你使用的是不使用你的类的第三方代码。
gprof2dot_magic公司
gprof2dot的神奇函数,用于在JupyterLab或Jupyter Notebook中将任何Python语句作为DOT图进行评测。
GitHub回购:https://github.com/mattijn/gprof2dot_magic
安装
确保您有Python包gprof2dot_magic。
pip install gprof2dot_magic
它的依赖关系gprof2dot和graphviz也将被安装
用法
要启用magic函数,首先加载gprof2dot_magic模块
%load_ext gprof2dot_magic
然后将任何行语句配置为DOT图,如下所示:
%gprof2dot print('hello world')
我发现cprofiler和其他资源更多地用于优化目的,而不是调试。
我制作了自己的测试模块,用于简单的python脚本速度测试。(在我的例子中,使用ScriptProfilerPy测试了1K+行py文件,并在几分钟内将代码速度提高了10倍。
模块ScriptProfilerPy()将运行代码,并向其添加时间戳。我把模块放在这里:https://github.com/Lucas-BLP/ScriptProfilerPy
Use:
from speed_testpy import ScriptProfilerPy
ScriptProfilerPy("path_to_your_script_to_test.py").Profiler()
输出:
对于像austin这样的统计分析器,不需要检测,这意味着您可以简单地使用
austin python3 my_script.py
原始输出不是很有用,但您可以将其传输到flamegraph.pl以获得该数据的火焰图表示,该火焰图提供了时间(以微秒为单位的实时)的细分。
austin python3 my_script.py | flamegraph.pl > my_script_profile.svg
或者,您也可以使用web应用程序Speedscope.app快速可视化收集的样本。如果您安装了pprof,还可以获取austin python(例如,pipx安装austin python)并使用austin2prof转换为pprof格式。
然而,如果您安装了VS Code,您可以使用Austin扩展来获得更交互式的体验,包括源代码热图、顶级函数和收集的调用堆栈
如果您想使用终端,也可以使用TUI,它也具有实时图形模式: