Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。

描述Python程序运行时间的好方法是什么?


当前回答

我发现,如果您不想使用命令行选项,该功能快速且易于使用。

要使用,只需在要分析的每个函数上方添加@profile。

def profile(fnc):
    """
    Profiles any function in following class just by adding @profile above function
    """
    import cProfile, pstats, io
    def inner (*args, **kwargs):
        pr = cProfile.Profile()
        pr.enable()
        retval = fnc (*args, **kwargs)
        pr.disable()
        s = io.StringIO()
        sortby = 'cumulative'   #Ordered
        ps = pstats.Stats(pr,stream=s).strip_dirs().sort_stats(sortby)
        n=10                    #reduced the list to be monitored
        ps.print_stats(n)
        #ps.dump_stats("profile.prof")
        print(s.getvalue())
        return retval
    return inner 

每个函数的输出如下

   Ordered by: cumulative time
   List reduced from 38 to 10 due to restriction <10>

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.002    0.002 3151212474.py:37(get_pdf_page_count)
        1    0.000    0.000    0.002    0.002 fitz.py:3604(__init__)
        1    0.001    0.001    0.001    0.001 {built-in method fitz._fitz.new_Document}
        1    0.000    0.000    0.000    0.000 fitz.py:5207(__del__)
        1    0.000    0.000    0.000    0.000 {built-in method fitz._fitz.delete_Document}
        1    0.000    0.000    0.000    0.000 fitz.py:4816(init_doc)
        1    0.000    0.000    0.000    0.000 fitz.py:5197(_reset_page_refs)
        1    0.000    0.000    0.000    0.000 fitz.py:4821(<listcomp>)
       11    0.000    0.000    0.000    0.000 fitz.py:4054(_getMetadata)
        1    0.000    0.000    0.000    0.000 weakref.py:241(values)

其他回答

当我不是服务器的根用户时,我使用lsprofcalltree.py并像这样运行我的程序:

python lsprofcalltree.py -o callgrind.1 test.py

然后我可以用任何callgrind兼容的软件打开报告,比如qcachegrind

只有终端(也是最简单的)解决方案,以防所有这些花哨的UI无法安装或运行:完全忽略cProfile并将其替换为pyinstrument,它将在执行后立即收集并显示调用树。

安装:

$ pip install pyinstrument

配置文件和显示结果:

$ python -m pyinstrument ./prog.py

适用于蟒蛇2和3。

[编辑]这里可以找到API的文档,用于分析代码的一部分。

一个很好的评测模块是line_profiler(使用kernprof.py脚本调用)。它可以在这里下载。

我的理解是,cProfile只提供每个函数花费的总时间的信息。因此,单独的代码行是不定时的。这是科学计算中的一个问题,因为通常一条线会花费很多时间。而且,我记得,cProfile没有抓住我在say numpy.dot上花费的时间。

有很多很好的答案,但它们要么使用命令行,要么使用一些外部程序来分析和/或排序结果。

我真的错过了在IDE(eclipsePyDev)中使用而不接触命令行或安装任何东西的方法。所以就在这里。

无命令行分析

def count():
    from math import sqrt
    for x in range(10**5):
        sqrt(x)

if __name__ == '__main__':
    import cProfile, pstats
    cProfile.run("count()", "{}.profile".format(__file__))
    s = pstats.Stats("{}.profile".format(__file__))
    s.strip_dirs()
    s.sort_stats("time").print_stats(10)

有关更多信息,请参阅文档或其他答案。

找到所有时间去向的最简单快捷的方法。

1. pip install snakeviz

2. python -m cProfile -o temp.dat <PROGRAM>.py

3. snakeviz temp.dat

在浏览器中绘制饼图。最大的部分是问题函数。非常简单。