Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
当前回答
我发现,如果您不想使用命令行选项,该功能快速且易于使用。
要使用,只需在要分析的每个函数上方添加@profile。
def profile(fnc):
"""
Profiles any function in following class just by adding @profile above function
"""
import cProfile, pstats, io
def inner (*args, **kwargs):
pr = cProfile.Profile()
pr.enable()
retval = fnc (*args, **kwargs)
pr.disable()
s = io.StringIO()
sortby = 'cumulative' #Ordered
ps = pstats.Stats(pr,stream=s).strip_dirs().sort_stats(sortby)
n=10 #reduced the list to be monitored
ps.print_stats(n)
#ps.dump_stats("profile.prof")
print(s.getvalue())
return retval
return inner
每个函数的输出如下
Ordered by: cumulative time
List reduced from 38 to 10 due to restriction <10>
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.002 0.002 3151212474.py:37(get_pdf_page_count)
1 0.000 0.000 0.002 0.002 fitz.py:3604(__init__)
1 0.001 0.001 0.001 0.001 {built-in method fitz._fitz.new_Document}
1 0.000 0.000 0.000 0.000 fitz.py:5207(__del__)
1 0.000 0.000 0.000 0.000 {built-in method fitz._fitz.delete_Document}
1 0.000 0.000 0.000 0.000 fitz.py:4816(init_doc)
1 0.000 0.000 0.000 0.000 fitz.py:5197(_reset_page_refs)
1 0.000 0.000 0.000 0.000 fitz.py:4821(<listcomp>)
11 0.000 0.000 0.000 0.000 fitz.py:4054(_getMetadata)
1 0.000 0.000 0.000 0.000 weakref.py:241(values)
其他回答
pprofile文件
line_profiler(此处已介绍)也启发了pprofile,其描述如下:
行粒度、线程感知确定性和统计纯python剖面仪
它提供了line_profiler的行粒度,是纯Python,可以用作独立命令或模块,甚至可以生成callgrind格式的文件,这些文件可以很容易地使用[k|q]cachegrind进行分析。
vprof公司
还有vprof,一个Python包,描述如下:
[…]为各种Python程序特性(如运行时间和内存使用)提供丰富的交互式可视化。
我发现cprofiler和其他资源更多地用于优化目的,而不是调试。
我制作了自己的测试模块,用于简单的python脚本速度测试。(在我的例子中,使用ScriptProfilerPy测试了1K+行py文件,并在几分钟内将代码速度提高了10倍。
模块ScriptProfilerPy()将运行代码,并向其添加时间戳。我把模块放在这里:https://github.com/Lucas-BLP/ScriptProfilerPy
Use:
from speed_testpy import ScriptProfilerPy
ScriptProfilerPy("path_to_your_script_to_test.py").Profiler()
输出:
根据乔·肖(Joe Shaw)关于多线程代码无法按预期工作的回答,我认为cProfile中的runcall方法只是围绕着已配置的函数调用执行self.enable()和self.disable()调用,因此您可以简单地自己执行,并在对现有代码的干扰最小的情况下使用任何代码。
当我不是服务器的根用户时,我使用lsprofcalltree.py并像这样运行我的程序:
python lsprofcalltree.py -o callgrind.1 test.py
然后我可以用任何callgrind兼容的软件打开报告,比如qcachegrind
找到所有时间去向的最简单快捷的方法。
1. pip install snakeviz
2. python -m cProfile -o temp.dat <PROGRAM>.py
3. snakeviz temp.dat
在浏览器中绘制饼图。最大的部分是问题函数。非常简单。