我有一个20 x 4000的数据帧在Python中使用熊猫。其中两列分别命名为Year和quarter。我想创建一个名为period的变量,使Year = 2000, quarter= q2变为2000q2。
有人能帮忙吗?
我有一个20 x 4000的数据帧在Python中使用熊猫。其中两列分别命名为Year和quarter。我想创建一个名为period的变量,使Year = 2000, quarter= q2变为2000q2。
有人能帮忙吗?
当前回答
def madd(x):
"""Performs element-wise string concatenation with multiple input arrays.
Args:
x: iterable of np.array.
Returns: np.array.
"""
for i, arr in enumerate(x):
if type(arr.item(0)) is not str:
x[i] = x[i].astype(str)
return reduce(np.core.defchararray.add, x)
例如:
data = list(zip([2000]*4, ['q1', 'q2', 'q3', 'q4']))
df = pd.DataFrame(data=data, columns=['Year', 'quarter'])
df['period'] = madd([df[col].values for col in ['Year', 'quarter']])
df
Year quarter period
0 2000 q1 2000q1
1 2000 q2 2000q2
2 2000 q3 2000q3
3 2000 q4 2000q4
其他回答
这次使用了string.format()的lamba函数。
import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'Quarter': ['q1', 'q2']})
print df
df['YearQuarter'] = df[['Year','Quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1)
print df
Quarter Year
0 q1 2014
1 q2 2015
Quarter Year YearQuarter
0 q1 2014 2014q1
1 q2 2015 2015q2
这允许您使用非字符串并根据需要重新格式化值。
import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'Quarter': [1, 2]})
print df.dtypes
print df
df['YearQuarter'] = df[['Year','Quarter']].apply(lambda x : '{}q{}'.format(x[0],x[1]), axis=1)
print df
Quarter int64
Year object
dtype: object
Quarter Year
0 1 2014
1 2 2015
Quarter Year YearQuarter
0 1 2014 2014q1
1 2 2015 2015q2
.str访问器的cat()方法非常适用于此:
>>> import pandas as pd
>>> df = pd.DataFrame([["2014", "q1"],
... ["2015", "q3"]],
... columns=('Year', 'Quarter'))
>>> print(df)
Year Quarter
0 2014 q1
1 2015 q3
>>> df['Period'] = df.Year.str.cat(df.Quarter)
>>> print(df)
Year Quarter Period
0 2014 q1 2014q1
1 2015 q3 2015q3
Cat()甚至允许你添加分隔符,例如,假设你只有整数年和周期,你可以这样做:
>>> import pandas as pd
>>> df = pd.DataFrame([[2014, 1],
... [2015, 3]],
... columns=('Year', 'Quarter'))
>>> print(df)
Year Quarter
0 2014 1
1 2015 3
>>> df['Period'] = df.Year.astype(str).str.cat(df.Quarter.astype(str), sep='q')
>>> print(df)
Year Quarter Period
0 2014 1 2014q1
1 2015 3 2015q3
连接多个列只是将一个序列列表或一个包含除第一列外的所有数据帧作为参数传递给在第一列(series)上调用的str.cat():
>>> df = pd.DataFrame(
... [['USA', 'Nevada', 'Las Vegas'],
... ['Brazil', 'Pernambuco', 'Recife']],
... columns=['Country', 'State', 'City'],
... )
>>> df['AllTogether'] = df['Country'].str.cat(df[['State', 'City']], sep=' - ')
>>> print(df)
Country State City AllTogether
0 USA Nevada Las Vegas USA - Nevada - Las Vegas
1 Brazil Pernambuco Recife Brazil - Pernambuco - Recife
请注意,如果您的pandas dataframe/series有空值,您需要包括参数na_rep来用字符串替换NaN值,否则合并的列将默认为NaN。
我把…
listofcols = ['col1','col2','col3']
df['combined_cols'] = ''
for column in listofcols:
df['combined_cols'] = df['combined_cols'] + ' ' + df[column]
'''
类似于@geher的答案,但可以使用任何你喜欢的分隔符:
SEP = " "
INPUT_COLUMNS_WITH_SEP = ",sep,".join(INPUT_COLUMNS).split(",")
df.assign(sep=SEP)[INPUT_COLUMNS_WITH_SEP].sum(axis=1)
正如前面提到的,必须将每个列转换为字符串,然后使用加号运算符将两个字符串列合并。使用NumPy可以大大提高性能。
%timeit df['Year'].values.astype(str) + df.quarter
71.1 ms ± 3.76 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit df['Year'].astype(str) + df['quarter']
565 ms ± 22.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)