我有一个20 x 4000的数据帧在Python中使用熊猫。其中两列分别命名为Year和quarter。我想创建一个名为period的变量,使Year = 2000, quarter= q2变为2000q2。
有人能帮忙吗?
我有一个20 x 4000的数据帧在Python中使用熊猫。其中两列分别命名为Year和quarter。我想创建一个名为period的变量,使Year = 2000, quarter= q2变为2000q2。
有人能帮忙吗?
当前回答
我把…
listofcols = ['col1','col2','col3']
df['combined_cols'] = ''
for column in listofcols:
df['combined_cols'] = df['combined_cols'] + ' ' + df[column]
'''
其他回答
该解决方案使用中间步骤,将DataFrame的两列压缩为包含值列表的单列。 这不仅适用于字符串,而且适用于所有类型的列-dtype
import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']})
df['list']=df[['Year','quarter']].values.tolist()
df['period']=df['list'].apply(''.join)
print(df)
结果:
Year quarter list period
0 2014 q1 [2014, q1] 2014q1
1 2015 q2 [2015, q2] 2015q2
小数据集(< 150行)
[''.join(i) for i in zip(df["Year"].map(str),df["quarter"])]
或者稍慢但更紧凑:
df.Year.str.cat(df.quarter)
更大的数据集(> 150rows)
df['Year'].astype(str) + df['quarter']
更新:定时图熊猫0.23.4
让我们在200K行上测试一下:
In [250]: df
Out[250]:
Year quarter
0 2014 q1
1 2015 q2
In [251]: df = pd.concat([df] * 10**5)
In [252]: df.shape
Out[252]: (200000, 2)
更新:新的计时使用熊猫0.19.0
没有CPU/GPU优化的计时(从最快到最慢排序):
In [107]: %timeit df['Year'].astype(str) + df['quarter']
10 loops, best of 3: 131 ms per loop
In [106]: %timeit df['Year'].map(str) + df['quarter']
10 loops, best of 3: 161 ms per loop
In [108]: %timeit df.Year.str.cat(df.quarter)
10 loops, best of 3: 189 ms per loop
In [109]: %timeit df.loc[:, ['Year','quarter']].astype(str).sum(axis=1)
1 loop, best of 3: 567 ms per loop
In [110]: %timeit df[['Year','quarter']].astype(str).sum(axis=1)
1 loop, best of 3: 584 ms per loop
In [111]: %timeit df[['Year','quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1)
1 loop, best of 3: 24.7 s per loop
使用CPU/GPU优化计时:
In [113]: %timeit df['Year'].astype(str) + df['quarter']
10 loops, best of 3: 53.3 ms per loop
In [114]: %timeit df['Year'].map(str) + df['quarter']
10 loops, best of 3: 65.5 ms per loop
In [115]: %timeit df.Year.str.cat(df.quarter)
10 loops, best of 3: 79.9 ms per loop
In [116]: %timeit df.loc[:, ['Year','quarter']].astype(str).sum(axis=1)
1 loop, best of 3: 230 ms per loop
In [117]: %timeit df[['Year','quarter']].astype(str).sum(axis=1)
1 loop, best of 3: 230 ms per loop
In [118]: %timeit df[['Year','quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1)
1 loop, best of 3: 9.38 s per loop
回答@anton-vbr的贡献
当使用加法运算符+将列与字符串连接起来时,如果其中任何一个是NaN,则整个输出将是NaN,因此使用fillna()
df["join"] = "some" + df["col"].fillna(df["val_if_nan"])
df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']})
df['period'] = df[['Year', 'quarter']].apply(lambda x: ''.join(x), axis=1)
产生这个数据框架
Year quarter period
0 2014 q1 2014q1
1 2015 q2 2015q2
该方法通过将df[['Year', 'quarter']]替换为数据帧的任意列片来泛化任意数量的字符串列,例如df.iloc[:,0:2]。Apply (lambda x: " .join(x), axis=1)。
您可以在这里查看有关apply()方法的更多信息
虽然@silvado的答案是好的,如果你把df.map(str)改为df.astype(str),它会更快:
import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']})
In [131]: %timeit df["Year"].map(str)
10000 loops, best of 3: 132 us per loop
In [132]: %timeit df["Year"].astype(str)
10000 loops, best of 3: 82.2 us per loop