我有一个20 x 4000的数据帧在Python中使用熊猫。其中两列分别命名为Year和quarter。我想创建一个名为period的变量,使Year = 2000, quarter= q2变为2000q2。

有人能帮忙吗?


当前回答

正如前面提到的,必须将每个列转换为字符串,然后使用加号运算符将两个字符串列合并。使用NumPy可以大大提高性能。

%timeit df['Year'].values.astype(str) + df.quarter
71.1 ms ± 3.76 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%timeit df['Year'].astype(str) + df['quarter']
565 ms ± 22.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

其他回答

如果两个列都是字符串,你可以直接连接它们:

df["period"] = df["Year"] + df["quarter"]

如果一个(或两个)列不是字符串类型的,你应该先转换它(它们),

df["period"] = df["Year"].astype(str) + df["quarter"]

这样做时要当心nan !


如果你需要连接多个字符串列,你可以使用agg:

df['period'] = df[['Year', 'quarter', ...]].agg('-'.join, axis=1)

其中“-”是分隔符。

类似于@geher的答案,但可以使用任何你喜欢的分隔符:

SEP = " "
INPUT_COLUMNS_WITH_SEP = ",sep,".join(INPUT_COLUMNS).split(",")

df.assign(sep=SEP)[INPUT_COLUMNS_WITH_SEP].sum(axis=1)

让我们假设你的数据框架是df,列是Year和Quarter。

import pandas as pd
df = pd.DataFrame({'Quarter':'q1 q2 q3 q4'.split(), 'Year':'2000'})

假设我们想要查看数据框架;

df
>>>  Quarter    Year
   0    q1      2000
   1    q2      2000
   2    q3      2000
   3    q4      2000

最后,将年度和季度连接起来,如下所示。

df['Period'] = df['Year'] + ' ' + df['Quarter']

现在可以打印df来查看结果的数据框架。

df
>>>  Quarter    Year    Period
    0   q1      2000    2000 q1
    1   q2      2000    2000 q2
    2   q3      2000    2000 q3
    3   q4      2000    2000 q4

如果你不想要年和季度之间的空间,只需删除它做;

df['Period'] = df['Year'] + df['Quarter']
df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']})
df['period'] = df[['Year', 'quarter']].apply(lambda x: ''.join(x), axis=1)

产生这个数据框架

   Year quarter  period
0  2014      q1  2014q1
1  2015      q2  2015q2

该方法通过将df[['Year', 'quarter']]替换为数据帧的任意列片来泛化任意数量的字符串列,例如df.iloc[:,0:2]。Apply (lambda x: " .join(x), axis=1)。

您可以在这里查看有关apply()方法的更多信息

使用.combine_first。

df['Period'] = df['Year'].combine_first(df['Quarter'])