我有一个20 x 4000的数据帧在Python中使用熊猫。其中两列分别命名为Year和quarter。我想创建一个名为period的变量,使Year = 2000, quarter= q2变为2000q2。
有人能帮忙吗?
我有一个20 x 4000的数据帧在Python中使用熊猫。其中两列分别命名为Year和quarter。我想创建一个名为period的变量,使Year = 2000, quarter= q2变为2000q2。
有人能帮忙吗?
当前回答
下面是我对上述解决方案的总结,将两个具有int和str值的列连接/组合成一个新列,在列值之间使用分隔符。有三种解决方案可以达到这个目的。
# be cautious about the separator, some symbols may cause "SyntaxError: EOL while scanning string literal".
# e.g. ";;" as separator would raise the SyntaxError
separator = "&&"
# pd.Series.str.cat() method does not work to concatenate / combine two columns with int value and str value. This would raise "AttributeError: Can only use .cat accessor with a 'category' dtype"
df["period"] = df["Year"].map(str) + separator + df["quarter"]
df["period"] = df[['Year','quarter']].apply(lambda x : '{} && {}'.format(x[0],x[1]), axis=1)
df["period"] = df.apply(lambda x: f'{x["Year"]} && {x["quarter"]}', axis=1)
其他回答
该解决方案使用中间步骤,将DataFrame的两列压缩为包含值列表的单列。 这不仅适用于字符串,而且适用于所有类型的列-dtype
import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']})
df['list']=df[['Year','quarter']].values.tolist()
df['period']=df['list'].apply(''.join)
print(df)
结果:
Year quarter list period
0 2014 q1 [2014, q1] 2014q1
1 2015 q2 [2015, q2] 2015q2
下面是我对上述解决方案的总结,将两个具有int和str值的列连接/组合成一个新列,在列值之间使用分隔符。有三种解决方案可以达到这个目的。
# be cautious about the separator, some symbols may cause "SyntaxError: EOL while scanning string literal".
# e.g. ";;" as separator would raise the SyntaxError
separator = "&&"
# pd.Series.str.cat() method does not work to concatenate / combine two columns with int value and str value. This would raise "AttributeError: Can only use .cat accessor with a 'category' dtype"
df["period"] = df["Year"].map(str) + separator + df["quarter"]
df["period"] = df[['Year','quarter']].apply(lambda x : '{} && {}'.format(x[0],x[1]), axis=1)
df["period"] = df.apply(lambda x: f'{x["Year"]} && {x["quarter"]}', axis=1)
这次使用了string.format()的lamba函数。
import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'Quarter': ['q1', 'q2']})
print df
df['YearQuarter'] = df[['Year','Quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1)
print df
Quarter Year
0 q1 2014
1 q2 2015
Quarter Year YearQuarter
0 q1 2014 2014q1
1 q2 2015 2015q2
这允许您使用非字符串并根据需要重新格式化值。
import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'Quarter': [1, 2]})
print df.dtypes
print df
df['YearQuarter'] = df[['Year','Quarter']].apply(lambda x : '{}q{}'.format(x[0],x[1]), axis=1)
print df
Quarter int64
Year object
dtype: object
Quarter Year
0 1 2014
1 2 2015
Quarter Year YearQuarter
0 1 2014 2014q1
1 2 2015 2015q2
可以使用DataFrame的assign方法:
df= (pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']}).
assign(period=lambda x: x.Year+x.quarter ))
def madd(x):
"""Performs element-wise string concatenation with multiple input arrays.
Args:
x: iterable of np.array.
Returns: np.array.
"""
for i, arr in enumerate(x):
if type(arr.item(0)) is not str:
x[i] = x[i].astype(str)
return reduce(np.core.defchararray.add, x)
例如:
data = list(zip([2000]*4, ['q1', 'q2', 'q3', 'q4']))
df = pd.DataFrame(data=data, columns=['Year', 'quarter'])
df['period'] = madd([df[col].values for col in ['Year', 'quarter']])
df
Year quarter period
0 2000 q1 2000q1
1 2000 q2 2000q2
2 2000 q3 2000q3
3 2000 q4 2000q4