我有一个20 x 4000的数据帧在Python中使用熊猫。其中两列分别命名为Year和quarter。我想创建一个名为period的变量,使Year = 2000, quarter= q2变为2000q2。
有人能帮忙吗?
我有一个20 x 4000的数据帧在Python中使用熊猫。其中两列分别命名为Year和quarter。我想创建一个名为period的变量,使Year = 2000, quarter= q2变为2000q2。
有人能帮忙吗?
当前回答
如果两个列都是字符串,你可以直接连接它们:
df["period"] = df["Year"] + df["quarter"]
如果一个(或两个)列不是字符串类型的,你应该先转换它(它们),
df["period"] = df["Year"].astype(str) + df["quarter"]
这样做时要当心nan !
如果你需要连接多个字符串列,你可以使用agg:
df['period'] = df[['Year', 'quarter', ...]].agg('-'.join, axis=1)
其中“-”是分隔符。
其他回答
虽然@silvado的答案是好的,如果你把df.map(str)改为df.astype(str),它会更快:
import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']})
In [131]: %timeit df["Year"].map(str)
10000 loops, best of 3: 132 us per loop
In [132]: %timeit df["Year"].astype(str)
10000 loops, best of 3: 82.2 us per loop
正如前面提到的,必须将每个列转换为字符串,然后使用加号运算符将两个字符串列合并。使用NumPy可以大大提高性能。
%timeit df['Year'].values.astype(str) + df.quarter
71.1 ms ± 3.76 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit df['Year'].astype(str) + df['quarter']
565 ms ± 22.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
这次使用了string.format()的lamba函数。
import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'Quarter': ['q1', 'q2']})
print df
df['YearQuarter'] = df[['Year','Quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1)
print df
Quarter Year
0 q1 2014
1 q2 2015
Quarter Year YearQuarter
0 q1 2014 2014q1
1 q2 2015 2015q2
这允许您使用非字符串并根据需要重新格式化值。
import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'Quarter': [1, 2]})
print df.dtypes
print df
df['YearQuarter'] = df[['Year','Quarter']].apply(lambda x : '{}q{}'.format(x[0],x[1]), axis=1)
print df
Quarter int64
Year object
dtype: object
Quarter Year
0 1 2014
1 2 2015
Quarter Year YearQuarter
0 1 2014 2014q1
1 2 2015 2015q2
更有效率的是
def concat_df_str1(df):
""" run time: 1.3416s """
return pd.Series([''.join(row.astype(str)) for row in df.values], index=df.index)
下面是一个时间测试:
import numpy as np
import pandas as pd
from time import time
def concat_df_str1(df):
""" run time: 1.3416s """
return pd.Series([''.join(row.astype(str)) for row in df.values], index=df.index)
def concat_df_str2(df):
""" run time: 5.2758s """
return df.astype(str).sum(axis=1)
def concat_df_str3(df):
""" run time: 5.0076s """
df = df.astype(str)
return df[0] + df[1] + df[2] + df[3] + df[4] + \
df[5] + df[6] + df[7] + df[8] + df[9]
def concat_df_str4(df):
""" run time: 7.8624s """
return df.astype(str).apply(lambda x: ''.join(x), axis=1)
def main():
df = pd.DataFrame(np.zeros(1000000).reshape(100000, 10))
df = df.astype(int)
time1 = time()
df_en = concat_df_str4(df)
print('run time: %.4fs' % (time() - time1))
print(df_en.head(10))
if __name__ == '__main__':
main()
最后,当使用sum(concat_df_str2)时,结果不是简单的concat,它将转换为整数。
df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']})
df['period'] = df[['Year', 'quarter']].apply(lambda x: ''.join(x), axis=1)
产生这个数据框架
Year quarter period
0 2014 q1 2014q1
1 2015 q2 2015q2
该方法通过将df[['Year', 'quarter']]替换为数据帧的任意列片来泛化任意数量的字符串列,例如df.iloc[:,0:2]。Apply (lambda x: " .join(x), axis=1)。
您可以在这里查看有关apply()方法的更多信息