我要证明log(n!) = Θ(n·log(n))

给出了一个提示,我应该用nn表示上界,用(n/2)(n/2)表示下界。这对我来说不是那么直观。为什么会这样呢?我可以清楚地看到如何将nn转换为n·log(n)(即方程两边都取对数),但这有点倒过来了。

解决这个问题的正确方法是什么?我要画递归树吗?没有什么递归的,所以这似乎不是一个可能的方法。


当前回答

对于下界,

lg(n!) = lg(n)+lg(n-1)+...+lg(n/2)+...+lg2+lg1
       >= lg(n/2)+lg(n/2)+...+lg(n/2)+ ((n-1)/2) lg 2 (leave last term lg1(=0); replace first n/2 terms as lg(n/2); replace last (n-1)/2 terms as lg2 which will make cancellation easier later)
       = n/2 lg(n/2) + (n/2) lg 2 - 1/2 lg 2
       = n/2 lg n - (n/2)(lg 2) + n/2 - 1/2
       = n/2 lg n - 1/2

lg(n!) >= (1/2) (n lg n - 1)

结合两个边界:

1/2 (nlgn - 1) <= lg(n!) <= nlgn

通过选择大于(1/2)的下界常数,我们可以补偿括号内的-1。

因此lk(n!) = (nlgn)

其他回答

参见斯特林近似:

-不,不,不。

后两项的重要性小于前一项。

对于下界,

lg(n!) = lg(n)+lg(n-1)+...+lg(n/2)+...+lg2+lg1
       >= lg(n/2)+lg(n/2)+...+lg(n/2)+ ((n-1)/2) lg 2 (leave last term lg1(=0); replace first n/2 terms as lg(n/2); replace last (n-1)/2 terms as lg2 which will make cancellation easier later)
       = n/2 lg(n/2) + (n/2) lg 2 - 1/2 lg 2
       = n/2 lg n - (n/2)(lg 2) + n/2 - 1/2
       = n/2 lg n - 1/2

lg(n!) >= (1/2) (n lg n - 1)

结合两个边界:

1/2 (nlgn - 1) <= lg(n!) <= nlgn

通过选择大于(1/2)的下界常数,我们可以补偿括号内的-1。

因此lk(n!) = (nlgn)

我知道这是一个有公认答案的老问题,但这些答案实际上都没有使用暗示所建议的方法。

这是一个非常简单的论证:

n !(= 1*2*3*…*n)是n个小于或等于n的数的乘积,因此它小于n个都等于n的数的乘积;也就是说,n ^ n。

一半的数字,即n/2个,在n!乘积大于或等于n/2。因此它们的乘积大于n/2个数的乘积都等于n/2;例如(n / 2) ^ (n / 2)。

全程记录日志以建立结果。

这可能会有帮助:

eln(x) = x

and

(lm)n = lm*n

http://en.wikipedia.org/wiki/Stirling%27s_approximation 斯特林近似可能对你有帮助。它在处理与10^10及以上数量级的巨大数字相关的阶乘问题时非常有用。