周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

向左倾斜的红黑树。罗伯特·塞奇威克(Robert Sedgewick)于2008年发表的红黑树的一个显著简化的实现(大约是要实现的代码行的一半)。如果您在红黑树的实现方面遇到过困难,请阅读此变体。

与安德森树非常相似(如果不是完全相同)。

其他回答

DAWG是一种特殊的Trie,其中类似的子树被压缩为单亲。我扩展了修改后的DAWG,并提出了一个漂亮的数据结构ASSDAWG(Anagram Search Sorted DAWG)。这种工作方式是,每当将字符串插入DAWG时,首先对其进行桶排序,然后插入,叶节点保存一个额外的数字,指示如果我们从根到达该叶节点,哪些排列是有效的。这有两大优点:

由于我在插入之前对字符串进行排序,并且DAWG自然会折叠类似的子树,所以我得到了高级别的压缩(例如,“吃”、“吃”和“茶”都变成了一条路径a-e-t,在叶节点处有一个数字列表,指示a-e-t的哪些排列是有效的)。搜索给定字符串的变位现在是非常快速和简单的,因为从根到叶的路径使用排列数保存了叶节点处该路径的所有有效变位。

您可以使用最小堆来在恒定时间内找到最小元素,或者使用最大堆来找到最大元素。但如果你想同时做这两项操作呢?可以使用“最小值-最大值”在恒定时间内执行这两个操作。它通过使用最小-最大排序来工作:在连续树级别之间交替进行最小和最大堆比较。

Fast Compact尝试:

Judy数组:用于位、整数和字符串的非常快速且内存高效的有序稀疏动态数组。Judy数组比任何二进制搜索树都更快、更节省内存。HAT-trie:一种基于缓存的字符串数据结构基于磁盘的字符串管理的B次尝试

远离所有这些图形结构,我只喜欢简单的环形缓冲区。

如果实施得当,您可以在保持性能的同时,甚至可以提高性能,从而大大减少内存占用。

以下是一些:

后缀尝试。适用于几乎所有类型的字符串搜索(http://en.wikipedia.org/wiki/Suffix_trie#Functionality). 另请参见后缀数组;它们没有后缀树那么快,但要小得多。飞溅的树木(如上所述)。它们很酷的原因有三个:它们很小:您只需要像在任何二叉树中那样的左右指针(不需要存储节点颜色或大小信息)它们(相对而言)很容易实施它们为一整套“测量标准”提供了最优的摊余复杂度(log n查找时间是每个人都知道的时间)。看见http://en.wikipedia.org/wiki/Splay_tree#Performance_theorems堆排序的搜索树:在树中存储一堆(key,prio)对,这样它就是一个关于关键字的搜索树,并根据优先级进行堆排序。人们可以看到这样一棵树有一个独特的形状(它并不总是完全堆积在左边)。使用随机优先级,它可以为您提供预期的O(log n)搜索时间,IIRC。一个小生境是具有O(1)邻居查询的无向平面图的邻接列表。与其说这是一种数据结构,不如说是一种组织现有数据结构的特定方式。这是如何做到的:每个平面图都有一个节点,其阶数最多为6。选择这样一个节点,将其邻居放在其邻居列表中,将其从图中删除,然后递归直到图为空。当给定一对(u,v)时,在v的邻居列表中查找u,在u的邻居列表上查找v。两者的大小都最多为6,因此这是O(1)。

根据上面的算法,如果u和v是邻居,那么v的列表中不会同时有u和v。如果需要,只需将每个节点缺失的邻居添加到该节点的邻居列表中,但要存储快速查找所需的邻居列表的数量。