以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。


如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?

在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。


当前回答

你可以使用列表扩展方法. 它显示是最快的:

flat_list = []
for sublist in l:
    flat_list.extend(sublist)

表演:

import functools
import itertools
import numpy
import operator
import perfplot


def functools_reduce_iconcat(a):
    return functools.reduce(operator.iconcat, a, [])


def itertools_chain(a):
    return list(itertools.chain.from_iterable(a))


def numpy_flat(a):
    return list(numpy.array(a).flat)


def extend(a):
    n = []

    list(map(n.extend, a))

    return n


perfplot.show(
    setup = lambda n: [list(range(10))] * n,
    kernels = [
        functools_reduce_iconcat, extend, itertools_chain, numpy_flat
        ],
    n_range = [2**k for k in range(16)],
    xlabel = 'num lists',
    )

出口:

此分類上一篇

其他回答

如果我想添加一些东西到以前的答案,这里是我的重复滑板功能,可以滑板不只是滑板列表,但也任何提供的容器或一般任何物品,可以扔出物品。

def flatten(iterable):
    # These types won't considered a sequence or generally a container
    exclude = str, bytes

    for i in iterable:
        try:
            if isinstance(i, exclude):
                raise TypeError
            iter(i)
        except TypeError:
            yield i
        else:
            yield from flatten(i)

这样,你可以排除你不想要的类型,如 str 或其他。

想法是,如果一个对象可以通过 iter(),它已经准备好产生物品,所以 iterable 甚至可以作为一个对象具有发明器表达式。

有人可以争论:为什么你写了这么一般的,当OP没有要求它?OK,你是对的,我只是觉得这可能帮助某人(就像它为我做的那样)。

测试案例:

lst1 = [1, {3}, (1, 6), [[3, 8]], [[[5]]], 9, ((((2,),),),)]
lst2 = ['3', B'A', [[[(i ** 2 for i in range(3))]]], range(3)]

print(list(flatten(lst1)))
print(list(flatten(lst2)))

出口:

[1, 3, 1, 6, 3, 8, 5, 9, 2]
['3', b'A', 0, 1, 4, 0, 1, 2]

您也可以使用NumPy的公寓:

import numpy as np
list(np.array(l).flat)

它只有在超级列表具有相同的尺寸时才有效。

def flatten_array(arr):
  result = []
  for item in arr:
    if isinstance(item, list):
      for num in item:
        result.append(num)
    else:
      result.append(item)
  return result

print(flatten_array([1, 2, [3, 4, 5], 6, [7, 8], 9]))
// output: [1, 2, 3, 4, 5, 6, 7, 8, 9]

你的功能不起作用的原因是因为延伸延伸一个序列在现场,并且不会返回它。

reduce(lambda x,y: x.extend(y) or x, l)

注意:扩展比 + 列表更有效。

一个非回归功能,以便在任何深度的列表列表:

def flatten_list(list1):
    out = []
    inside = list1
    while inside:
        x = inside.pop(0)
        if isinstance(x, list):
            inside[0:0] = x
        else:
            out.append(x)
    return out

l = [[[1,2],3,[4,[[5,6],7],[8]]],[9,10,11]]
flatten_list(l)
# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]