以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
当前回答
def flatten_array(arr):
result = []
for item in arr:
if isinstance(item, list):
for num in item:
result.append(num)
else:
result.append(item)
return result
print(flatten_array([1, 2, [3, 4, 5], 6, [7, 8], 9]))
// output: [1, 2, 3, 4, 5, 6, 7, 8, 9]
其他回答
我想要一個解決方案,可以處理多種<unk>(<unk>,<unk>,<unk>,<unk>),<unk>,<unk>,<unk>,<unk>,<unk>,<unk>,<unk>,<unk>,<unk>,<unk>,<unk>,<unk>,<unk>。
这就是我所带来的:
def _flatten(l) -> Iterator[Any]:
stack = l.copy()
while stack:
item = stack.pop()
if isinstance(item, list):
stack.extend(item)
else:
yield item
def flatten(l) -> Iterator[Any]:
return reversed(list(_flatten(l)))
和测试:
@pytest.mark.parametrize('input_list, expected_output', [
([1, 2, 3], [1, 2, 3]),
([[1], 2, 3], [1, 2, 3]),
([[1], [2], 3], [1, 2, 3]),
([[1], [2], [3]], [1, 2, 3]),
([[1], [[2]], [3]], [1, 2, 3]),
([[1], [[[2]], [3]]], [1, 2, 3]),
])
def test_flatten(input_list, expected_output):
assert list(flatten(input_list)) == expected_output
你的功能不起作用的原因是因为延伸延伸一个序列在现场,并且不会返回它。
reduce(lambda x,y: x.extend(y) or x, l)
注意:扩展比 + 列表更有效。
作者的注意事项:这是非常不有效的,但有趣,因为单曲是惊人的。
>>> xss = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
>>> sum(xss, [])
[1, 2, 3, 4, 5, 6, 7, 8, 9]
总数是不可分割 xss 的元素,并使用第二个论点作为总数的初始值(默认初始值为0,这不是列表)。
因為你們是清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清。
请注意,它只适用于列表列表,对于列表列表列表,您将需要另一个解决方案。
考虑到列表L的列表,
flat_list = [item for sublist in l for item in sublist]
意思是:
flat_list = []
for sublist in l:
for item in sublist:
flat_list.append(item)
它比迄今为止发布的短篇文章更快(l 是表格的列表)。
下面是相应的功能:
def flatten(l):
return [item for sublist in l for item in sublist]
作为证据,您可以在标准图书馆中使用时间模块:
$ python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' '[item for sublist in l for item in sublist]'
10000 loops, best of 3: 143 usec per loop
$ python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' 'sum(l, [])'
1000 loops, best of 3: 969 usec per loop
$ python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' 'reduce(lambda x,y: x+y,l)'
1000 loops, best of 3: 1.1 msec per loop
解释:基于 + 的缩写(包括在总中使用)是必然的 O(L**2)当有 L 列表时 - 因为中间结果列表保持长,每个步骤都会分配一个新的中间结果列表对象,前中间结果中的所有对象都必须复制(以及在结尾添加一些新的对象)。
列表理解只产生一个列表,一次,并复制每个项目(从其原始居住地到结果列表)也准确一次。
要插入深厚的数据结构,请使用 iteration_utilities.deepflatten1:
>>> from iteration_utilities import deepflatten
>>> l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
>>> list(deepflatten(l, depth=1))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> l = [[1, 2, 3], [4, [5, 6]], 7, [8, 9]]
>>> list(deepflatten(l))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
这是一个发电机,所以你需要将结果投到列表中,或者明确地对其进行调解。
要单一的平面,如果每一个项目本身是不可分割的,你也可以使用 iteration_utilities.flatten 它本身只是一个薄的旋转器周围 itertools.chain.from_iterable:
>>> from iteration_utilities import flatten
>>> l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
>>> list(flatten(l))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
只需添加一些时间表(基于Nico Schlömer的答案,其中不包含此答案中的功能):
此分類上一篇
结果表明,如果 iterable 只包含几个内部 iterables 那么 总数将是最快的,但是,对于长期 iterables 只有 itertools.chain.from_iterable, iteration_utilities.deepflatten 或 nested 理解具有合理的性能, itertools.chain.from_iterable 是最快的(如 Nico Schlömer 已经注意到)。
from itertools import chain
from functools import reduce
from collections import Iterable # or from collections.abc import Iterable
import operator
from iteration_utilities import deepflatten
def nested_list_comprehension(lsts):
return [item for sublist in lsts for item in sublist]
def itertools_chain_from_iterable(lsts):
return list(chain.from_iterable(lsts))
def pythons_sum(lsts):
return sum(lsts, [])
def reduce_add(lsts):
return reduce(lambda x, y: x + y, lsts)
def pylangs_flatten(lsts):
return list(flatten(lsts))
def flatten(items):
"""Yield items from any nested iterable; see REF."""
for x in items:
if isinstance(x, Iterable) and not isinstance(x, (str, bytes)):
yield from flatten(x)
else:
yield x
def reduce_concat(lsts):
return reduce(operator.concat, lsts)
def iteration_utilities_deepflatten(lsts):
return list(deepflatten(lsts, depth=1))
from simple_benchmark import benchmark
b = benchmark(
[nested_list_comprehension, itertools_chain_from_iterable, pythons_sum, reduce_add,
pylangs_flatten, reduce_concat, iteration_utilities_deepflatten],
arguments={2**i: [[0]*5]*(2**i) for i in range(1, 13)},
argument_name='number of inner lists'
)
b.plot()
1 Disclaimer:我是该图书馆的作者