以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
当前回答
使用 functools.reduce,将积累的列表 xs 添加到下列列表 ys:
from functools import reduce
xss = [[1,2,3], [4,5,6], [7], [8,9]]
out = reduce(lambda xs, ys: xs + ys, xss)
出口:
[1, 2, 3, 4, 5, 6, 7, 8, 9]
使用 operator.concat 的更快方法:
from functools import reduce
import operator
xss = [[1,2,3], [4,5,6], [7], [8,9]]
out = reduce(operator.concat, xss)
出口:
[1, 2, 3, 4, 5, 6, 7, 8, 9]
其他回答
使用 functools.reduce,将积累的列表 xs 添加到下列列表 ys:
from functools import reduce
xss = [[1,2,3], [4,5,6], [7], [8,9]]
out = reduce(lambda xs, ys: xs + ys, xss)
出口:
[1, 2, 3, 4, 5, 6, 7, 8, 9]
使用 operator.concat 的更快方法:
from functools import reduce
import operator
xss = [[1,2,3], [4,5,6], [7], [8,9]]
out = reduce(operator.concat, xss)
出口:
[1, 2, 3, 4, 5, 6, 7, 8, 9]
作者的注意事项:这是非常不有效的,但有趣,因为单曲是惊人的。
>>> xss = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
>>> sum(xss, [])
[1, 2, 3, 4, 5, 6, 7, 8, 9]
总数是不可分割 xss 的元素,并使用第二个论点作为总数的初始值(默认初始值为0,这不是列表)。
因為你們是清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清。
请注意,它只适用于列表列表,对于列表列表列表,您将需要另一个解决方案。
根據您的列表(1, 2, 3), [4, 5, 6], [7], [8, 9] 是 1 列表水平,我們可以簡單地使用數量(列表),而不使用任何圖書館。
sum([[1, 2, 3], [4, 5, 6], [7], [8, 9]],[])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
延伸此方法的优势,当内部存在一个<unk>或数字时,简单地将每个元素的地图函数添加到列表中
#For only tuple
sum(list(map(list,[[1, 2, 3], (4, 5, 6), (7,), [8, 9]])),[])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
#In general
def convert(x):
if type(x) is int or type(x) is float:
return [x]
else:
return list(x)
sum(list(map(convert,[[1, 2, 3], (4, 5, 6), 7, [8, 9]])),[])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
在这里,有一个明确的解释的缺点在记忆的这个方法。 简而言之,它重复创建列表对象,应该避免( )
這裡有一個通用方法,適用於數字、線條、粘列表和混合容器,這可以讓簡單和複雜的容器混合起來(請參閱Demo)。
代码
from typing import Iterable
#from collections import Iterable # < py38
def flatten(items):
"""Yield items from any nested iterable; see Reference."""
for x in items:
if isinstance(x, Iterable) and not isinstance(x, (str, bytes)):
for sub_x in flatten(x):
yield sub_x
else:
yield x
笔记:
在 Python 3 中,从 flatten(x) 获取可以取代 sub_x 在 flatten(x): 获取 sub_x 在 Python 3.8 中,从 collection.abc 转移到输入模块。
演示
simple = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
list(flatten(simple))
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
complicated = [[1, [2]], (3, 4, {5, 6}, 7), 8, "9"] # numbers, strs, nested & mixed
list(flatten(complicated))
# [1, 2, 3, 4, 5, 6, 7, 8, '9']
参考
此解決方案是從 Beazley, D. 和 B. Jones. Recipe 4.14, Python Cookbook 3rd Ed., O'Reilly Media Inc. Sebastopol, CA: 2013 發現以前的 SO 帖子,可能是原來的展示。
我用 perfplot 测试了大多数建议的解决方案(我的宠物项目,基本上是时间周围的插槽),并发现
import functools
import operator
functools.reduce(operator.iconcat, a, [])
要成为最快的解决方案,无论是许多小列表还是很少的长列表都被混合(operator.iadd 同样快)。
更简单、更可接受的选择是
out = []
for sublist in a:
out.extend(sublist)
如果字体列表的数量很大,这表现得比上面的建议略糟糕。
此分類上一篇
此分類上一篇
重复字符的代码:
import functools
import itertools
import operator
import numpy as np
import perfplot
def forfor(a):
return [item for sublist in a for item in sublist]
def sum_brackets(a):
return sum(a, [])
def functools_reduce(a):
return functools.reduce(operator.concat, a)
def functools_reduce_iconcat(a):
return functools.reduce(operator.iconcat, a, [])
def itertools_chain(a):
return list(itertools.chain.from_iterable(a))
def numpy_flat(a):
return list(np.array(a).flat)
def numpy_concatenate(a):
return list(np.concatenate(a))
def extend(a):
out = []
for sublist in a:
out.extend(sublist)
return out
b = perfplot.bench(
setup=lambda n: [list(range(10))] * n,
# setup=lambda n: [list(range(n))] * 10,
kernels=[
forfor,
sum_brackets,
functools_reduce,
functools_reduce_iconcat,
itertools_chain,
numpy_flat,
numpy_concatenate,
extend,
],
n_range=[2 ** k for k in range(16)],
xlabel="num lists (of length 10)",
# xlabel="len lists (10 lists total)"
)
b.save("out.png")
b.show()