以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
当前回答
这可能不是最有效的方式,但我认为要放一个单线(实际上是一个双线)。两种版本都会在任意的序列列列表上工作,并利用语言功能(Python 3.5)和回归。
def make_list_flat (l):
flist = []
flist.extend ([l]) if (type (l) is not list) else [flist.extend (make_list_flat (e)) for e in l]
return flist
a = [[1, 2], [[[[3, 4, 5], 6]]], 7, [8, [9, [10, 11], 12, [13, 14, [15, [[16, 17], 18]]]]]]
flist = make_list_flat(a)
print (flist)
产量是
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
它首先以深度工作. 旋转会下降,直到它找到一个非列表元素,然后延伸当地变量板,然后转向父母。 每当板回来时,它在列表理解中延伸到父母的板。
上面的一个创建了几个地方列表,并返回它们,这些列表被用来扩展父母的列表,我认为这一点的路径可能是创建一个可怕的板块,如下。
a = [[1, 2], [[[[3, 4, 5], 6]]], 7, [8, [9, [10, 11], 12, [13, 14, [15, [[16, 17], 18]]]]]]
flist = []
def make_list_flat (l):
flist.extend ([l]) if (type (l) is not list) else [make_list_flat (e) for e in l]
make_list_flat(a)
print (flist)
产量再次
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
虽然我目前对效率不确定。
其他回答
我用 perfplot 测试了大多数建议的解决方案(我的宠物项目,基本上是时间周围的插槽),并发现
import functools
import operator
functools.reduce(operator.iconcat, a, [])
要成为最快的解决方案,无论是许多小列表还是很少的长列表都被混合(operator.iadd 同样快)。
更简单、更可接受的选择是
out = []
for sublist in a:
out.extend(sublist)
如果字体列表的数量很大,这表现得比上面的建议略糟糕。
此分類上一篇
此分類上一篇
重复字符的代码:
import functools
import itertools
import operator
import numpy as np
import perfplot
def forfor(a):
return [item for sublist in a for item in sublist]
def sum_brackets(a):
return sum(a, [])
def functools_reduce(a):
return functools.reduce(operator.concat, a)
def functools_reduce_iconcat(a):
return functools.reduce(operator.iconcat, a, [])
def itertools_chain(a):
return list(itertools.chain.from_iterable(a))
def numpy_flat(a):
return list(np.array(a).flat)
def numpy_concatenate(a):
return list(np.concatenate(a))
def extend(a):
out = []
for sublist in a:
out.extend(sublist)
return out
b = perfplot.bench(
setup=lambda n: [list(range(10))] * n,
# setup=lambda n: [list(range(n))] * 10,
kernels=[
forfor,
sum_brackets,
functools_reduce,
functools_reduce_iconcat,
itertools_chain,
numpy_flat,
numpy_concatenate,
extend,
],
n_range=[2 ** k for k in range(16)],
xlabel="num lists (of length 10)",
# xlabel="len lists (10 lists total)"
)
b.save("out.png")
b.show()
def flatten(alist):
if alist == []:
return []
elif type(alist) is not list:
return [alist]
else:
return flatten(alist[0]) + flatten(alist[1:])
我会建议使用发电机与产量声明和产量从。
from collections.abc import Iterable
def flatten(items, ignore_types=(bytes, str)):
"""
Flatten all of the nested lists to the one. Ignoring flatting of iterable types str and bytes by default.
"""
for x in items:
if isinstance(x, Iterable) and not isinstance(x, ignore_types):
yield from flatten(x)
else:
yield x
values = [7, [4, 3, 5, [7, 3], (3, 4), ('A', {'B', 'C'})]]
for v in flatten(values):
print(v)
如果你想清理一切,并保持一个单独的元素列表,你也可以使用它。
list_of_lists = [[1,2], [2,3], [3,4]]
list(set.union(*[set(s) for s in list_of_lists]))
使用 functools.reduce,将积累的列表 xs 添加到下列列表 ys:
from functools import reduce
xss = [[1,2,3], [4,5,6], [7], [8,9]]
out = reduce(lambda xs, ys: xs + ys, xss)
出口:
[1, 2, 3, 4, 5, 6, 7, 8, 9]
使用 operator.concat 的更快方法:
from functools import reduce
import operator
xss = [[1,2,3], [4,5,6], [7], [8,9]]
out = reduce(operator.concat, xss)
出口:
[1, 2, 3, 4, 5, 6, 7, 8, 9]