以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
当前回答
要插入深厚的数据结构,请使用 iteration_utilities.deepflatten1:
>>> from iteration_utilities import deepflatten
>>> l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
>>> list(deepflatten(l, depth=1))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> l = [[1, 2, 3], [4, [5, 6]], 7, [8, 9]]
>>> list(deepflatten(l))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
这是一个发电机,所以你需要将结果投到列表中,或者明确地对其进行调解。
要单一的平面,如果每一个项目本身是不可分割的,你也可以使用 iteration_utilities.flatten 它本身只是一个薄的旋转器周围 itertools.chain.from_iterable:
>>> from iteration_utilities import flatten
>>> l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
>>> list(flatten(l))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
只需添加一些时间表(基于Nico Schlömer的答案,其中不包含此答案中的功能):
此分類上一篇
结果表明,如果 iterable 只包含几个内部 iterables 那么 总数将是最快的,但是,对于长期 iterables 只有 itertools.chain.from_iterable, iteration_utilities.deepflatten 或 nested 理解具有合理的性能, itertools.chain.from_iterable 是最快的(如 Nico Schlömer 已经注意到)。
from itertools import chain
from functools import reduce
from collections import Iterable # or from collections.abc import Iterable
import operator
from iteration_utilities import deepflatten
def nested_list_comprehension(lsts):
return [item for sublist in lsts for item in sublist]
def itertools_chain_from_iterable(lsts):
return list(chain.from_iterable(lsts))
def pythons_sum(lsts):
return sum(lsts, [])
def reduce_add(lsts):
return reduce(lambda x, y: x + y, lsts)
def pylangs_flatten(lsts):
return list(flatten(lsts))
def flatten(items):
"""Yield items from any nested iterable; see REF."""
for x in items:
if isinstance(x, Iterable) and not isinstance(x, (str, bytes)):
yield from flatten(x)
else:
yield x
def reduce_concat(lsts):
return reduce(operator.concat, lsts)
def iteration_utilities_deepflatten(lsts):
return list(deepflatten(lsts, depth=1))
from simple_benchmark import benchmark
b = benchmark(
[nested_list_comprehension, itertools_chain_from_iterable, pythons_sum, reduce_add,
pylangs_flatten, reduce_concat, iteration_utilities_deepflatten],
arguments={2**i: [[0]*5]*(2**i) for i in range(1, 13)},
argument_name='number of inner lists'
)
b.plot()
1 Disclaimer:我是该图书馆的作者
其他回答
考虑安装 more_itertools 包。
> pip install more_itertools
它配备了一个应用程序为平板(来源,从 itertools 食谱):
import more_itertools
lst = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
list(more_itertools.flatten(lst))
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
注意:正如文件中提到的那样,平板需要列表。 查看下面的平板更多不规则输入。
至于版本 2.4,您可以用更多_itertools.collapse (来源,由abarnet 贡献) 插入更复杂、更精致的 iterables。
lst = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
list(more_itertools.collapse(lst))
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
lst = [[1, 2, 3], [[4, 5, 6]], [[[7]]], 8, 9] # complex nesting
list(more_itertools.collapse(lst))
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
作者的注意事项:这是非常不有效的,但有趣,因为单曲是惊人的。
>>> xss = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
>>> sum(xss, [])
[1, 2, 3, 4, 5, 6, 7, 8, 9]
总数是不可分割 xss 的元素,并使用第二个论点作为总数的初始值(默认初始值为0,这不是列表)。
因為你們是清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清。
请注意,它只适用于列表列表,对于列表列表列表,您将需要另一个解决方案。
一个非回归功能,以便在任何深度的列表列表:
def flatten_list(list1):
out = []
inside = list1
while inside:
x = inside.pop(0)
if isinstance(x, list):
inside[0:0] = x
else:
out.append(x)
return out
l = [[[1,2],3,[4,[[5,6],7],[8]]],[9,10,11]]
flatten_list(l)
# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
如果你愿意放弃一小量的速度,以便更清洁的外观,那么你可以使用numpy.concatenate().tolist() 或 numpy.concatenate().ravel().tolist():
import numpy
l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]] * 99
%timeit numpy.concatenate(l).ravel().tolist()
1000 loops, best of 3: 313 µs per loop
%timeit numpy.concatenate(l).tolist()
1000 loops, best of 3: 312 µs per loop
%timeit [item for sublist in l for item in sublist]
1000 loops, best of 3: 31.5 µs per loop
您可以在文档中了解更多, numpy.concatenate 和 numpy.ravel。
matplotlib.cbook.flatten() 将为粘贴列表工作,即使它们比示例更深地粘贴。
import matplotlib
l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
print(list(matplotlib.cbook.flatten(l)))
l2 = [[1, 2, 3], [4, 5, 6], [7], [8, [9, 10, [11, 12, [13]]]]]
print(list(matplotlib.cbook.flatten(l2)))
结果:
[1, 2, 3, 4, 5, 6, 7, 8, 9]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
这比 underscore 快 18 倍。
Average time over 1000 trials of matplotlib.cbook.flatten: 2.55e-05 sec
Average time over 1000 trials of underscore._.flatten: 4.63e-04 sec
(time for underscore._)/(time for matplotlib.cbook) = 18.1233394636