以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。


如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?

在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。


当前回答

这对我来说似乎是最简单的:

>>> import numpy as np
>>> l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
>>> print(np.concatenate(l))
[1 2 3 4 5 6 7 8 9]

其他回答

不是一个单行,但看到所有的答案在这里,我猜这个漫长的列表错过了一些模式匹配,所以在这里它是:)

这两种方法可能不是有效的,但无论如何,它很容易阅读(至少对我来说,也许我被功能编程所困扰):

def flat(x):
    match x:
        case []:
            return []
        case [[*sublist], *r]:
            return [*sublist, *flat(r)]

第二版考虑了列表列表的列表......不管什么:

def flat(x):
    match x:
        case []:
            return []
        case [[*sublist], *r]:
            return [*flat(sublist), *flat(r)]
        case [h, *r]:
            return [h, *flat(r)]

我用 perfplot 测试了大多数建议的解决方案(我的宠物项目,基本上是时间周围的插槽),并发现

import functools
import operator
functools.reduce(operator.iconcat, a, [])

要成为最快的解决方案,无论是许多小列表还是很少的长列表都被混合(operator.iadd 同样快)。

更简单、更可接受的选择是

out = []
for sublist in a:
    out.extend(sublist)

如果字体列表的数量很大,这表现得比上面的建议略糟糕。

此分類上一篇

此分類上一篇


重复字符的代码:

import functools
import itertools
import operator

import numpy as np
import perfplot


def forfor(a):
    return [item for sublist in a for item in sublist]


def sum_brackets(a):
    return sum(a, [])


def functools_reduce(a):
    return functools.reduce(operator.concat, a)


def functools_reduce_iconcat(a):
    return functools.reduce(operator.iconcat, a, [])


def itertools_chain(a):
    return list(itertools.chain.from_iterable(a))


def numpy_flat(a):
    return list(np.array(a).flat)


def numpy_concatenate(a):
    return list(np.concatenate(a))


def extend(a):
    out = []
    for sublist in a:
        out.extend(sublist)
    return out


b = perfplot.bench(
    setup=lambda n: [list(range(10))] * n,
    # setup=lambda n: [list(range(n))] * 10,
    kernels=[
        forfor,
        sum_brackets,
        functools_reduce,
        functools_reduce_iconcat,
        itertools_chain,
        numpy_flat,
        numpy_concatenate,
        extend,
    ],
    n_range=[2 ** k for k in range(16)],
    xlabel="num lists (of length 10)",
    # xlabel="len lists (10 lists total)"
)
b.save("out.png")
b.show()

你的功能不起作用的原因是因为延伸延伸一个序列在现场,并且不会返回它。

reduce(lambda x,y: x.extend(y) or x, l)

注意:扩展比 + 列表更有效。

def flatten(alist):
    if alist == []:
        return []
    elif type(alist) is not list:
        return [alist]
    else:
        return flatten(alist[0]) + flatten(alist[1:])

这可能不是最有效的方式,但我认为要放一个单线(实际上是一个双线)。两种版本都会在任意的序列列列表上工作,并利用语言功能(Python 3.5)和回归。

def make_list_flat (l):
    flist = []
    flist.extend ([l]) if (type (l) is not list) else [flist.extend (make_list_flat (e)) for e in l]
    return flist

a = [[1, 2], [[[[3, 4, 5], 6]]], 7, [8, [9, [10, 11], 12, [13, 14, [15, [[16, 17], 18]]]]]]
flist = make_list_flat(a)
print (flist)

产量是

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]

它首先以深度工作. 旋转会下降,直到它找到一个非列表元素,然后延伸当地变量板,然后转向父母。 每当板回来时,它在列表理解中延伸到父母的板。

上面的一个创建了几个地方列表,并返回它们,这些列表被用来扩展父母的列表,我认为这一点的路径可能是创建一个可怕的板块,如下。

a = [[1, 2], [[[[3, 4, 5], 6]]], 7, [8, [9, [10, 11], 12, [13, 14, [15, [[16, 17], 18]]]]]]
flist = []
def make_list_flat (l):
    flist.extend ([l]) if (type (l) is not list) else [make_list_flat (e) for e in l]

make_list_flat(a)
print (flist)

产量再次

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]

虽然我目前对效率不确定。