以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
当前回答
另一个不寻常的方法,适用于异常和均匀的整体列表:
from typing import List
def flatten(l: list) -> List[int]:
"""Flatten an arbitrary deep nested list of lists of integers.
Examples:
>>> flatten([1, 2, [1, [10]]])
[1, 2, 1, 10]
Args:
l: Union[l, Union[int, List[int]]
Returns:
Flatted list of integer
"""
return [int(i.strip('[ ]')) for i in str(l).split(',')]
其他回答
def flatten(itr):
for x in itr:
try:
yield from flatten(x)
except TypeError:
yield x
使用:这是一个发电机,通常你想将它插入一个不可分割的构建器,如列表()或<<<<<<<<或使用它在一个为旋转。
这个解决方案的好处是:
工作任何类型的无缝(即使是未来的!)工作任何组合和深度的无缝工作,如果顶级包含无依赖物品,快速和高效(你可以平滑无缝的部分,没有浪费时间的剩余部分你不需要)多样性(你可以使用它来构建一个无缝的你的选择或在旋转)
注:由于所有 iterables 都是浮动的,所以线条分为单个字符的序列. 如果您不喜欢/不喜欢这种行为,您可以使用下列版本,从浮动的 iterables 如线条和比特中进行过滤:
def flatten(itr):
if type(itr) in (str,bytes):
yield itr
else:
for x in itr:
try:
yield from flatten(x)
except TypeError:
yield x
你可以简单地使用Pandas这样做:
import pandas as pd
pd.Series([[1, 2, 3], [4, 5, 6], [7], [8, 9]]).sum()
我创建了一点功能,基本上可以平滑任何东西. 你可以用管道:管道安装平滑一切
from flatten_everything import flatten_everything
withoutprotection=list(
flatten_everything(
[
1,
1,
2,
[3, 4, 5, [6, 3, [2, 5, ["sfs", "sdfsfdsf",]]]],
1,
3,
34,
[
55,
{"brand": "Ford", "model": "Mustang", "year": 1964, "yearxx": 2020},
pd.DataFrame({"col1": [1, 2], "col2": [3, 4]}),
{"col1": [1, 2], "col2": [3, 4]},
55,
{"k32", 34},
np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]),
(np.arange(22), np.eye(2, 2), 33),
],
]
)
)
print(withoutprotection)
output:
[1, 1, 2, 3, 4, 5, 6, 3, 2, 5, 'sfs', 'sdfsfdsf', 1, 3, 34, 55, 'Ford', 'Mustang', 1964, 2020, 1, 2, 3, 4, 1, 2, 3, 4, 55, 34, 'k32', 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 1.0, 0.0, 0.0, 1.0, 33]
你甚至可以保护物体免受闪烁:
from flatten_everything import ProtectedDict,ProtectedList,ProtectedTuple
withprotection=list(
flatten_everything(
[
1,
1,
2,
[3, 4, 5, [6, 3, [2, 5, ProtectedList(["sfs", "sdfsfdsf",])]]],
1,
3,
34,
[
55,
ProtectedDict({"brand": "Ford", "model": "Mustang", "year": 1964, "yearxx": 2020}),
pd.DataFrame({"col1": [1, 2], "col2": [3, 4]}),
{"col1": [1, 2], "col2": [3, 4]},
55,
{"k32", 34},
np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]),
ProtectedTuple((np.arange(22), np.eye(2, 2), 33)),
],
]
)
)
print(withprotection)
output:
[1, 1, 2, 3, 4, 5, 6, 3, 2, 5, ['sfs', 'sdfsfdsf'], 1, 3, 34, 55, {'brand': 'Ford', 'model': 'Mustang', 'year': 1964, 'yearxx': 2020}, 1, 2, 3, 4, 1, 2, 3, 4, 55, 34, 'k32', 1, 2, 3, 4, 5, 6, 7, 8, (array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,17, 18, 19, 20, 21]), array([[1., 0.], [0., 1.]]), 33)]
最简单的方式在Python没有任何图书馆
此功能还将适用于多维列表。
使用 recursion 我们可以实现列表中的任何组合,我们可以无需使用任何图书馆。
#Devil
x = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
output = []
def flatten(v):
if isinstance(v, int):
output.append(v)
if isinstance(v, list):
for i in range(0, len(v)):
flatten(v[i])
flatten(x)
print("Output:", output)
#Output: [1, 2, 3, 4, 5, 6, 7, 8, 9]
#Adding more dimensions
x = [ [1, [2, 3, [4, 5], [6]], 7 ], [8, [9, [10]]] ]
flatten(x)
print("Output:", output)
#Output: [1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
如果我想添加一些东西到以前的答案,这里是我的重复滑板功能,可以滑板不只是滑板列表,但也任何提供的容器或一般任何物品,可以扔出物品。
def flatten(iterable):
# These types won't considered a sequence or generally a container
exclude = str, bytes
for i in iterable:
try:
if isinstance(i, exclude):
raise TypeError
iter(i)
except TypeError:
yield i
else:
yield from flatten(i)
这样,你可以排除你不想要的类型,如 str 或其他。
想法是,如果一个对象可以通过 iter(),它已经准备好产生物品,所以 iterable 甚至可以作为一个对象具有发明器表达式。
有人可以争论:为什么你写了这么一般的,当OP没有要求它?OK,你是对的,我只是觉得这可能帮助某人(就像它为我做的那样)。
测试案例:
lst1 = [1, {3}, (1, 6), [[3, 8]], [[[5]]], 9, ((((2,),),),)]
lst2 = ['3', B'A', [[[(i ** 2 for i in range(3))]]], range(3)]
print(list(flatten(lst1)))
print(list(flatten(lst2)))
出口:
[1, 3, 1, 6, 3, 8, 5, 9, 2]
['3', b'A', 0, 1, 4, 0, 1, 2]