以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。


如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?

在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。


当前回答

如果我想添加一些东西到以前的答案,这里是我的重复滑板功能,可以滑板不只是滑板列表,但也任何提供的容器或一般任何物品,可以扔出物品。

def flatten(iterable):
    # These types won't considered a sequence or generally a container
    exclude = str, bytes

    for i in iterable:
        try:
            if isinstance(i, exclude):
                raise TypeError
            iter(i)
        except TypeError:
            yield i
        else:
            yield from flatten(i)

这样,你可以排除你不想要的类型,如 str 或其他。

想法是,如果一个对象可以通过 iter(),它已经准备好产生物品,所以 iterable 甚至可以作为一个对象具有发明器表达式。

有人可以争论:为什么你写了这么一般的,当OP没有要求它?OK,你是对的,我只是觉得这可能帮助某人(就像它为我做的那样)。

测试案例:

lst1 = [1, {3}, (1, 6), [[3, 8]], [[[5]]], 9, ((((2,),),),)]
lst2 = ['3', B'A', [[[(i ** 2 for i in range(3))]]], range(3)]

print(list(flatten(lst1)))
print(list(flatten(lst2)))

出口:

[1, 3, 1, 6, 3, 8, 5, 9, 2]
['3', b'A', 0, 1, 4, 0, 1, 2]

其他回答

注意: 下面适用于 Python 3.3+ 因为它使用 yield_from. six 也是第三方包,尽管它是稳定的。


在obj = [1, 2,], [3, 4], [5, 6]的情况下,这里的所有解决方案都很好,包括列表理解和 itertools.chain.from_iterable。

但是,考虑这个稍微复杂的案例:

>>> obj = [[1, 2, 3], [4, 5], 6, 'abc', [7], [8, [9, 10]]]

这里有几个问题:

您可以以以下方式解决此问题:

>>> from collections import Iterable
>>> from six import string_types

>>> def flatten(obj):
...     for i in obj:
...         if isinstance(i, Iterable) and not isinstance(i, string_types):
...             yield from flatten(i)
...         else:
...             yield i


>>> list(flatten(obj))
[1, 2, 3, 4, 5, 6, 'abc', 7, 8, 9, 10]

在这里,您可以检查(一)的子元素(一)与(一)的Iterable(一)无效,从(一)的ABC,但也希望确保(二)的元素(一)不是“类似于(一)的”。

最简单的方式在Python没有任何图书馆

此功能还将适用于多维列表。

使用 recursion 我们可以实现列表中的任何组合,我们可以无需使用任何图书馆。

#Devil
x = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]


output = []
def flatten(v):
    if isinstance(v, int):
        output.append(v)
    if isinstance(v, list):
        for i in range(0, len(v)):
            flatten(v[i])

flatten(x)
print("Output:", output)
#Output: [1, 2, 3, 4, 5, 6, 7, 8, 9]

#Adding more dimensions 
x = [ [1, [2, 3, [4, 5], [6]], 7 ], [8, [9, [10]]] ]
flatten(x)
print("Output:", output)
#Output: [1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

我用 perfplot 测试了大多数建议的解决方案(我的宠物项目,基本上是时间周围的插槽),并发现

import functools
import operator
functools.reduce(operator.iconcat, a, [])

要成为最快的解决方案,无论是许多小列表还是很少的长列表都被混合(operator.iadd 同样快)。

更简单、更可接受的选择是

out = []
for sublist in a:
    out.extend(sublist)

如果字体列表的数量很大,这表现得比上面的建议略糟糕。

此分類上一篇

此分類上一篇


重复字符的代码:

import functools
import itertools
import operator

import numpy as np
import perfplot


def forfor(a):
    return [item for sublist in a for item in sublist]


def sum_brackets(a):
    return sum(a, [])


def functools_reduce(a):
    return functools.reduce(operator.concat, a)


def functools_reduce_iconcat(a):
    return functools.reduce(operator.iconcat, a, [])


def itertools_chain(a):
    return list(itertools.chain.from_iterable(a))


def numpy_flat(a):
    return list(np.array(a).flat)


def numpy_concatenate(a):
    return list(np.concatenate(a))


def extend(a):
    out = []
    for sublist in a:
        out.extend(sublist)
    return out


b = perfplot.bench(
    setup=lambda n: [list(range(10))] * n,
    # setup=lambda n: [list(range(n))] * 10,
    kernels=[
        forfor,
        sum_brackets,
        functools_reduce,
        functools_reduce_iconcat,
        itertools_chain,
        numpy_flat,
        numpy_concatenate,
        extend,
    ],
    n_range=[2 ** k for k in range(16)],
    xlabel="num lists (of length 10)",
    # xlabel="len lists (10 lists total)"
)
b.save("out.png")
b.show()

您也可以使用NumPy的公寓:

import numpy as np
list(np.array(l).flat)

它只有在超级列表具有相同的尺寸时才有效。

你的功能不起作用的原因是因为延伸延伸一个序列在现场,并且不会返回它。

reduce(lambda x,y: x.extend(y) or x, l)

注意:扩展比 + 列表更有效。