以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。


如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?

在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。


当前回答

如果你愿意放弃一小量的速度,以便更清洁的外观,那么你可以使用numpy.concatenate().tolist() 或 numpy.concatenate().ravel().tolist():

import numpy

l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]] * 99

%timeit numpy.concatenate(l).ravel().tolist()
1000 loops, best of 3: 313 µs per loop

%timeit numpy.concatenate(l).tolist()
1000 loops, best of 3: 312 µs per loop

%timeit [item for sublist in l for item in sublist]
1000 loops, best of 3: 31.5 µs per loop

您可以在文档中了解更多, numpy.concatenate 和 numpy.ravel。

其他回答

使用 functools.reduce,将积累的列表 xs 添加到下列列表 ys:

from functools import reduce
xss = [[1,2,3], [4,5,6], [7], [8,9]]
out = reduce(lambda xs, ys: xs + ys, xss)

出口:

[1, 2, 3, 4, 5, 6, 7, 8, 9]

使用 operator.concat 的更快方法:

from functools import reduce
import operator
xss = [[1,2,3], [4,5,6], [7], [8,9]]
out = reduce(operator.concat, xss)

出口:

[1, 2, 3, 4, 5, 6, 7, 8, 9]

你可以使用列表扩展方法. 它显示是最快的:

flat_list = []
for sublist in l:
    flat_list.extend(sublist)

表演:

import functools
import itertools
import numpy
import operator
import perfplot


def functools_reduce_iconcat(a):
    return functools.reduce(operator.iconcat, a, [])


def itertools_chain(a):
    return list(itertools.chain.from_iterable(a))


def numpy_flat(a):
    return list(numpy.array(a).flat)


def extend(a):
    n = []

    list(map(n.extend, a))

    return n


perfplot.show(
    setup = lambda n: [list(range(10))] * n,
    kernels = [
        functools_reduce_iconcat, extend, itertools_chain, numpy_flat
        ],
    n_range = [2**k for k in range(16)],
    xlabel = 'num lists',
    )

出口:

此分類上一篇

根據您的列表(1, 2, 3), [4, 5, 6], [7], [8, 9] 是 1 列表水平,我們可以簡單地使用數量(列表),而不使用任何圖書館。

sum([[1, 2, 3], [4, 5, 6], [7], [8, 9]],[])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]

延伸此方法的优势,当内部存在一个<unk>或数字时,简单地将每个元素的地图函数添加到列表中

#For only tuple
sum(list(map(list,[[1, 2, 3], (4, 5, 6), (7,), [8, 9]])),[])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]

#In general

def convert(x):
    if type(x) is int or type(x) is float:
           return [x]
    else:
           return list(x)

sum(list(map(convert,[[1, 2, 3], (4, 5, 6), 7, [8, 9]])),[])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]

在这里,有一个明确的解释的缺点在记忆的这个方法。 简而言之,它重复创建列表对象,应该避免( )

我用 perfplot 测试了大多数建议的解决方案(我的宠物项目,基本上是时间周围的插槽),并发现

import functools
import operator
functools.reduce(operator.iconcat, a, [])

要成为最快的解决方案,无论是许多小列表还是很少的长列表都被混合(operator.iadd 同样快)。

更简单、更可接受的选择是

out = []
for sublist in a:
    out.extend(sublist)

如果字体列表的数量很大,这表现得比上面的建议略糟糕。

此分類上一篇

此分類上一篇


重复字符的代码:

import functools
import itertools
import operator

import numpy as np
import perfplot


def forfor(a):
    return [item for sublist in a for item in sublist]


def sum_brackets(a):
    return sum(a, [])


def functools_reduce(a):
    return functools.reduce(operator.concat, a)


def functools_reduce_iconcat(a):
    return functools.reduce(operator.iconcat, a, [])


def itertools_chain(a):
    return list(itertools.chain.from_iterable(a))


def numpy_flat(a):
    return list(np.array(a).flat)


def numpy_concatenate(a):
    return list(np.concatenate(a))


def extend(a):
    out = []
    for sublist in a:
        out.extend(sublist)
    return out


b = perfplot.bench(
    setup=lambda n: [list(range(10))] * n,
    # setup=lambda n: [list(range(n))] * 10,
    kernels=[
        forfor,
        sum_brackets,
        functools_reduce,
        functools_reduce_iconcat,
        itertools_chain,
        numpy_flat,
        numpy_concatenate,
        extend,
    ],
    n_range=[2 ** k for k in range(16)],
    xlabel="num lists (of length 10)",
    # xlabel="len lists (10 lists total)"
)
b.save("out.png")
b.show()

不是一个单行,但看到所有的答案在这里,我猜这个漫长的列表错过了一些模式匹配,所以在这里它是:)

这两种方法可能不是有效的,但无论如何,它很容易阅读(至少对我来说,也许我被功能编程所困扰):

def flat(x):
    match x:
        case []:
            return []
        case [[*sublist], *r]:
            return [*sublist, *flat(r)]

第二版考虑了列表列表的列表......不管什么:

def flat(x):
    match x:
        case []:
            return []
        case [[*sublist], *r]:
            return [*flat(sublist), *flat(r)]
        case [h, *r]:
            return [h, *flat(r)]