以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
当前回答
根據您的列表(1, 2, 3), [4, 5, 6], [7], [8, 9] 是 1 列表水平,我們可以簡單地使用數量(列表),而不使用任何圖書館。
sum([[1, 2, 3], [4, 5, 6], [7], [8, 9]],[])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
延伸此方法的优势,当内部存在一个<unk>或数字时,简单地将每个元素的地图函数添加到列表中
#For only tuple
sum(list(map(list,[[1, 2, 3], (4, 5, 6), (7,), [8, 9]])),[])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
#In general
def convert(x):
if type(x) is int or type(x) is float:
return [x]
else:
return list(x)
sum(list(map(convert,[[1, 2, 3], (4, 5, 6), 7, [8, 9]])),[])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
在这里,有一个明确的解释的缺点在记忆的这个方法。 简而言之,它重复创建列表对象,应该避免( )
其他回答
def flatten(alist):
if alist == []:
return []
elif type(alist) is not list:
return [alist]
else:
return flatten(alist[0]) + flatten(alist[1:])
你的功能不起作用的原因是因为延伸延伸一个序列在现场,并且不会返回它。
reduce(lambda x,y: x.extend(y) or x, l)
注意:扩展比 + 列表更有效。
我创建了一点功能,基本上可以平滑任何东西. 你可以用管道:管道安装平滑一切
from flatten_everything import flatten_everything
withoutprotection=list(
flatten_everything(
[
1,
1,
2,
[3, 4, 5, [6, 3, [2, 5, ["sfs", "sdfsfdsf",]]]],
1,
3,
34,
[
55,
{"brand": "Ford", "model": "Mustang", "year": 1964, "yearxx": 2020},
pd.DataFrame({"col1": [1, 2], "col2": [3, 4]}),
{"col1": [1, 2], "col2": [3, 4]},
55,
{"k32", 34},
np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]),
(np.arange(22), np.eye(2, 2), 33),
],
]
)
)
print(withoutprotection)
output:
[1, 1, 2, 3, 4, 5, 6, 3, 2, 5, 'sfs', 'sdfsfdsf', 1, 3, 34, 55, 'Ford', 'Mustang', 1964, 2020, 1, 2, 3, 4, 1, 2, 3, 4, 55, 34, 'k32', 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 1.0, 0.0, 0.0, 1.0, 33]
你甚至可以保护物体免受闪烁:
from flatten_everything import ProtectedDict,ProtectedList,ProtectedTuple
withprotection=list(
flatten_everything(
[
1,
1,
2,
[3, 4, 5, [6, 3, [2, 5, ProtectedList(["sfs", "sdfsfdsf",])]]],
1,
3,
34,
[
55,
ProtectedDict({"brand": "Ford", "model": "Mustang", "year": 1964, "yearxx": 2020}),
pd.DataFrame({"col1": [1, 2], "col2": [3, 4]}),
{"col1": [1, 2], "col2": [3, 4]},
55,
{"k32", 34},
np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]),
ProtectedTuple((np.arange(22), np.eye(2, 2), 33)),
],
]
)
)
print(withprotection)
output:
[1, 1, 2, 3, 4, 5, 6, 3, 2, 5, ['sfs', 'sdfsfdsf'], 1, 3, 34, 55, {'brand': 'Ford', 'model': 'Mustang', 'year': 1964, 'yearxx': 2020}, 1, 2, 3, 4, 1, 2, 3, 4, 55, 34, 'k32', 1, 2, 3, 4, 5, 6, 7, 8, (array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,17, 18, 19, 20, 21]), array([[1., 0.], [0., 1.]]), 33)]
这对我来说似乎是最简单的:
>>> import numpy as np
>>> l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
>>> print(np.concatenate(l))
[1 2 3 4 5 6 7 8 9]
如果你有一个Numpy Array A:
a = np.array([[1,2], [3,4]])
a.flatten('C')
生产:
[1, 2, 3, 4]
np.flatten 也接受其他参数:
C: F A K
有关参数的详细信息可在这里找到。