以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。


如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?

在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。


当前回答

一个非回归功能,以便在任何深度的列表列表:

def flatten_list(list1):
    out = []
    inside = list1
    while inside:
        x = inside.pop(0)
        if isinstance(x, list):
            inside[0:0] = x
        else:
            out.append(x)
    return out

l = [[[1,2],3,[4,[[5,6],7],[8]]],[9,10,11]]
flatten_list(l)
# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

其他回答

我会建议使用发电机与产量声明和产量从。

from collections.abc import Iterable

def flatten(items, ignore_types=(bytes, str)):
    """
       Flatten all of the nested lists to the one. Ignoring flatting of iterable types str and bytes by default.
    """
    for x in items:
        if isinstance(x, Iterable) and not isinstance(x, ignore_types):
            yield from flatten(x)
        else:
            yield x

values = [7, [4, 3, 5, [7, 3], (3, 4), ('A', {'B', 'C'})]]

for v in flatten(values):
    print(v)

你可以使用列表扩展方法. 它显示是最快的:

flat_list = []
for sublist in l:
    flat_list.extend(sublist)

表演:

import functools
import itertools
import numpy
import operator
import perfplot


def functools_reduce_iconcat(a):
    return functools.reduce(operator.iconcat, a, [])


def itertools_chain(a):
    return list(itertools.chain.from_iterable(a))


def numpy_flat(a):
    return list(numpy.array(a).flat)


def extend(a):
    n = []

    list(map(n.extend, a))

    return n


perfplot.show(
    setup = lambda n: [list(range(10))] * n,
    kernels = [
        functools_reduce_iconcat, extend, itertools_chain, numpy_flat
        ],
    n_range = [2**k for k in range(16)],
    xlabel = 'num lists',
    )

出口:

此分類上一篇

您可以使用 itertools.chain():

>>> import itertools
>>> list2d = [[1,2,3], [4,5,6], [7], [8,9]]
>>> merged = list(itertools.chain(*list2d))

或者您可以使用 itertools.chain.from_iterable(),不需要与 * 运营商解包列表:

>>> import itertools
>>> list2d = [[1,2,3], [4,5,6], [7], [8,9]]
>>> merged = list(itertools.chain.from_iterable(list2d))

这种方法可能比 [分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类

$ python3 -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99;import itertools' 'list(itertools.chain.from_iterable(l))'
20000 loops, best of 5: 10.8 usec per loop
$ python3 -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' '[item for sublist in l for item in sublist]'
10000 loops, best of 5: 21.7 usec per loop
$ python3 -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' 'sum(l, [])'
1000 loops, best of 5: 258 usec per loop
$ python3 -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99;from functools import reduce' 'reduce(lambda x,y: x+y,l)'
1000 loops, best of 5: 292 usec per loop
$ python3 --version
Python 3.7.5rc1

我想要一個解決方案,可以處理多種<unk>(<unk>,<unk>,<unk>,<unk>),<unk>,<unk>,<unk>,<unk>,<unk>,<unk>,<unk>,<unk>,<unk>,<unk>,<unk>,<unk>,<unk>。

这就是我所带来的:

def _flatten(l) -> Iterator[Any]:
    stack = l.copy()
    while stack:
        item = stack.pop()
        if isinstance(item, list):
            stack.extend(item)
        else:
            yield item


def flatten(l) -> Iterator[Any]:
    return reversed(list(_flatten(l)))

和测试:

@pytest.mark.parametrize('input_list, expected_output', [
    ([1, 2, 3], [1, 2, 3]),
    ([[1], 2, 3], [1, 2, 3]),
    ([[1], [2], 3], [1, 2, 3]),
    ([[1], [2], [3]], [1, 2, 3]),
    ([[1], [[2]], [3]], [1, 2, 3]),
    ([[1], [[[2]], [3]]], [1, 2, 3]),
])
def test_flatten(input_list, expected_output):
    assert list(flatten(input_list)) == expected_output

注意: 下面适用于 Python 3.3+ 因为它使用 yield_from. six 也是第三方包,尽管它是稳定的。


在obj = [1, 2,], [3, 4], [5, 6]的情况下,这里的所有解决方案都很好,包括列表理解和 itertools.chain.from_iterable。

但是,考虑这个稍微复杂的案例:

>>> obj = [[1, 2, 3], [4, 5], 6, 'abc', [7], [8, [9, 10]]]

这里有几个问题:

您可以以以下方式解决此问题:

>>> from collections import Iterable
>>> from six import string_types

>>> def flatten(obj):
...     for i in obj:
...         if isinstance(i, Iterable) and not isinstance(i, string_types):
...             yield from flatten(i)
...         else:
...             yield i


>>> list(flatten(obj))
[1, 2, 3, 4, 5, 6, 'abc', 7, 8, 9, 10]

在这里,您可以检查(一)的子元素(一)与(一)的Iterable(一)无效,从(一)的ABC,但也希望确保(二)的元素(一)不是“类似于(一)的”。