以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
当前回答
你可以简单地使用Pandas这样做:
import pandas as pd
pd.Series([[1, 2, 3], [4, 5, 6], [7], [8, 9]]).sum()
其他回答
注意: 下面适用于 Python 3.3+ 因为它使用 yield_from. six 也是第三方包,尽管它是稳定的。
在obj = [1, 2,], [3, 4], [5, 6]的情况下,这里的所有解决方案都很好,包括列表理解和 itertools.chain.from_iterable。
但是,考虑这个稍微复杂的案例:
>>> obj = [[1, 2, 3], [4, 5], 6, 'abc', [7], [8, [9, 10]]]
这里有几个问题:
您可以以以下方式解决此问题:
>>> from collections import Iterable
>>> from six import string_types
>>> def flatten(obj):
... for i in obj:
... if isinstance(i, Iterable) and not isinstance(i, string_types):
... yield from flatten(i)
... else:
... yield i
>>> list(flatten(obj))
[1, 2, 3, 4, 5, 6, 'abc', 7, 8, 9, 10]
在这里,您可以检查(一)的子元素(一)与(一)的Iterable(一)无效,从(一)的ABC,但也希望确保(二)的元素(一)不是“类似于(一)的”。
我创建了一点功能,基本上可以平滑任何东西. 你可以用管道:管道安装平滑一切
from flatten_everything import flatten_everything
withoutprotection=list(
flatten_everything(
[
1,
1,
2,
[3, 4, 5, [6, 3, [2, 5, ["sfs", "sdfsfdsf",]]]],
1,
3,
34,
[
55,
{"brand": "Ford", "model": "Mustang", "year": 1964, "yearxx": 2020},
pd.DataFrame({"col1": [1, 2], "col2": [3, 4]}),
{"col1": [1, 2], "col2": [3, 4]},
55,
{"k32", 34},
np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]),
(np.arange(22), np.eye(2, 2), 33),
],
]
)
)
print(withoutprotection)
output:
[1, 1, 2, 3, 4, 5, 6, 3, 2, 5, 'sfs', 'sdfsfdsf', 1, 3, 34, 55, 'Ford', 'Mustang', 1964, 2020, 1, 2, 3, 4, 1, 2, 3, 4, 55, 34, 'k32', 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 1.0, 0.0, 0.0, 1.0, 33]
你甚至可以保护物体免受闪烁:
from flatten_everything import ProtectedDict,ProtectedList,ProtectedTuple
withprotection=list(
flatten_everything(
[
1,
1,
2,
[3, 4, 5, [6, 3, [2, 5, ProtectedList(["sfs", "sdfsfdsf",])]]],
1,
3,
34,
[
55,
ProtectedDict({"brand": "Ford", "model": "Mustang", "year": 1964, "yearxx": 2020}),
pd.DataFrame({"col1": [1, 2], "col2": [3, 4]}),
{"col1": [1, 2], "col2": [3, 4]},
55,
{"k32", 34},
np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]),
ProtectedTuple((np.arange(22), np.eye(2, 2), 33)),
],
]
)
)
print(withprotection)
output:
[1, 1, 2, 3, 4, 5, 6, 3, 2, 5, ['sfs', 'sdfsfdsf'], 1, 3, 34, 55, {'brand': 'Ford', 'model': 'Mustang', 'year': 1964, 'yearxx': 2020}, 1, 2, 3, 4, 1, 2, 3, 4, 55, 34, 'k32', 1, 2, 3, 4, 5, 6, 7, 8, (array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,17, 18, 19, 20, 21]), array([[1., 0.], [0., 1.]]), 33)]
根據您的列表(1, 2, 3), [4, 5, 6], [7], [8, 9] 是 1 列表水平,我們可以簡單地使用數量(列表),而不使用任何圖書館。
sum([[1, 2, 3], [4, 5, 6], [7], [8, 9]],[])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
延伸此方法的优势,当内部存在一个<unk>或数字时,简单地将每个元素的地图函数添加到列表中
#For only tuple
sum(list(map(list,[[1, 2, 3], (4, 5, 6), (7,), [8, 9]])),[])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
#In general
def convert(x):
if type(x) is int or type(x) is float:
return [x]
else:
return list(x)
sum(list(map(convert,[[1, 2, 3], (4, 5, 6), 7, [8, 9]])),[])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
在这里,有一个明确的解释的缺点在记忆的这个方法。 简而言之,它重复创建列表对象,应该避免( )
对于包含多个列表的列表,这里是一个重复的解决方案,为我工作,我希望它是正确的:
# Question 4
def flatten(input_ls=[]) -> []:
res_ls = []
res_ls = flatten_recursive(input_ls, res_ls)
print("Final flatten list solution is: \n", res_ls)
return res_ls
def flatten_recursive(input_ls=[], res_ls=[]) -> []:
tmp_ls = []
for i in input_ls:
if isinstance(i, int):
res_ls.append(i)
else:
tmp_ls = i
tmp_ls.append(flatten_recursive(i, res_ls))
print(res_ls)
return res_ls
flatten([0, 1, [2, 3], 4, [5, 6]]) # test
flatten([0, [[[1]]], [[2, 3], [4, [[5, 6]]]]])
出口:
[0, 1, 2, 3]
[0, 1, 2, 3, 4, 5, 6]
[0, 1, 2, 3, 4, 5, 6]
Final flatten list solution is:
[0, 1, 2, 3, 4, 5, 6]
[0, 1]
[0, 1]
[0, 1]
[0, 1, 2, 3]
[0, 1, 2, 3, 4, 5, 6]
[0, 1, 2, 3, 4, 5, 6]
[0, 1, 2, 3, 4, 5, 6]
[0, 1, 2, 3, 4, 5, 6]
[0, 1, 2, 3, 4, 5, 6]
Final flatten list solution is:
[0, 1, 2, 3, 4, 5, 6]
要插入深厚的数据结构,请使用 iteration_utilities.deepflatten1:
>>> from iteration_utilities import deepflatten
>>> l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
>>> list(deepflatten(l, depth=1))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> l = [[1, 2, 3], [4, [5, 6]], 7, [8, 9]]
>>> list(deepflatten(l))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
这是一个发电机,所以你需要将结果投到列表中,或者明确地对其进行调解。
要单一的平面,如果每一个项目本身是不可分割的,你也可以使用 iteration_utilities.flatten 它本身只是一个薄的旋转器周围 itertools.chain.from_iterable:
>>> from iteration_utilities import flatten
>>> l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
>>> list(flatten(l))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
只需添加一些时间表(基于Nico Schlömer的答案,其中不包含此答案中的功能):
此分類上一篇
结果表明,如果 iterable 只包含几个内部 iterables 那么 总数将是最快的,但是,对于长期 iterables 只有 itertools.chain.from_iterable, iteration_utilities.deepflatten 或 nested 理解具有合理的性能, itertools.chain.from_iterable 是最快的(如 Nico Schlömer 已经注意到)。
from itertools import chain
from functools import reduce
from collections import Iterable # or from collections.abc import Iterable
import operator
from iteration_utilities import deepflatten
def nested_list_comprehension(lsts):
return [item for sublist in lsts for item in sublist]
def itertools_chain_from_iterable(lsts):
return list(chain.from_iterable(lsts))
def pythons_sum(lsts):
return sum(lsts, [])
def reduce_add(lsts):
return reduce(lambda x, y: x + y, lsts)
def pylangs_flatten(lsts):
return list(flatten(lsts))
def flatten(items):
"""Yield items from any nested iterable; see REF."""
for x in items:
if isinstance(x, Iterable) and not isinstance(x, (str, bytes)):
yield from flatten(x)
else:
yield x
def reduce_concat(lsts):
return reduce(operator.concat, lsts)
def iteration_utilities_deepflatten(lsts):
return list(deepflatten(lsts, depth=1))
from simple_benchmark import benchmark
b = benchmark(
[nested_list_comprehension, itertools_chain_from_iterable, pythons_sum, reduce_add,
pylangs_flatten, reduce_concat, iteration_utilities_deepflatten],
arguments={2**i: [[0]*5]*(2**i) for i in range(1, 13)},
argument_name='number of inner lists'
)
b.plot()
1 Disclaimer:我是该图书馆的作者