以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
当前回答
這裡有一個通用方法,適用於數字、線條、粘列表和混合容器,這可以讓簡單和複雜的容器混合起來(請參閱Demo)。
代码
from typing import Iterable
#from collections import Iterable # < py38
def flatten(items):
"""Yield items from any nested iterable; see Reference."""
for x in items:
if isinstance(x, Iterable) and not isinstance(x, (str, bytes)):
for sub_x in flatten(x):
yield sub_x
else:
yield x
笔记:
在 Python 3 中,从 flatten(x) 获取可以取代 sub_x 在 flatten(x): 获取 sub_x 在 Python 3.8 中,从 collection.abc 转移到输入模块。
演示
simple = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
list(flatten(simple))
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
complicated = [[1, [2]], (3, 4, {5, 6}, 7), 8, "9"] # numbers, strs, nested & mixed
list(flatten(complicated))
# [1, 2, 3, 4, 5, 6, 7, 8, '9']
参考
此解決方案是從 Beazley, D. 和 B. Jones. Recipe 4.14, Python Cookbook 3rd Ed., O'Reilly Media Inc. Sebastopol, CA: 2013 發現以前的 SO 帖子,可能是原來的展示。
其他回答
使用 functools.reduce,将积累的列表 xs 添加到下列列表 ys:
from functools import reduce
xss = [[1,2,3], [4,5,6], [7], [8,9]]
out = reduce(lambda xs, ys: xs + ys, xss)
出口:
[1, 2, 3, 4, 5, 6, 7, 8, 9]
使用 operator.concat 的更快方法:
from functools import reduce
import operator
xss = [[1,2,3], [4,5,6], [7], [8,9]]
out = reduce(operator.concat, xss)
出口:
[1, 2, 3, 4, 5, 6, 7, 8, 9]
你的功能不起作用的原因是因为延伸延伸一个序列在现场,并且不会返回它。
reduce(lambda x,y: x.extend(y) or x, l)
注意:扩展比 + 列表更有效。
我创建了一点功能,基本上可以平滑任何东西. 你可以用管道:管道安装平滑一切
from flatten_everything import flatten_everything
withoutprotection=list(
flatten_everything(
[
1,
1,
2,
[3, 4, 5, [6, 3, [2, 5, ["sfs", "sdfsfdsf",]]]],
1,
3,
34,
[
55,
{"brand": "Ford", "model": "Mustang", "year": 1964, "yearxx": 2020},
pd.DataFrame({"col1": [1, 2], "col2": [3, 4]}),
{"col1": [1, 2], "col2": [3, 4]},
55,
{"k32", 34},
np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]),
(np.arange(22), np.eye(2, 2), 33),
],
]
)
)
print(withoutprotection)
output:
[1, 1, 2, 3, 4, 5, 6, 3, 2, 5, 'sfs', 'sdfsfdsf', 1, 3, 34, 55, 'Ford', 'Mustang', 1964, 2020, 1, 2, 3, 4, 1, 2, 3, 4, 55, 34, 'k32', 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 1.0, 0.0, 0.0, 1.0, 33]
你甚至可以保护物体免受闪烁:
from flatten_everything import ProtectedDict,ProtectedList,ProtectedTuple
withprotection=list(
flatten_everything(
[
1,
1,
2,
[3, 4, 5, [6, 3, [2, 5, ProtectedList(["sfs", "sdfsfdsf",])]]],
1,
3,
34,
[
55,
ProtectedDict({"brand": "Ford", "model": "Mustang", "year": 1964, "yearxx": 2020}),
pd.DataFrame({"col1": [1, 2], "col2": [3, 4]}),
{"col1": [1, 2], "col2": [3, 4]},
55,
{"k32", 34},
np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]),
ProtectedTuple((np.arange(22), np.eye(2, 2), 33)),
],
]
)
)
print(withprotection)
output:
[1, 1, 2, 3, 4, 5, 6, 3, 2, 5, ['sfs', 'sdfsfdsf'], 1, 3, 34, 55, {'brand': 'Ford', 'model': 'Mustang', 'year': 1964, 'yearxx': 2020}, 1, 2, 3, 4, 1, 2, 3, 4, 55, 34, 'k32', 1, 2, 3, 4, 5, 6, 7, 8, (array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,17, 18, 19, 20, 21]), array([[1., 0.], [0., 1.]]), 33)]
注意: 下面适用于 Python 3.3+ 因为它使用 yield_from. six 也是第三方包,尽管它是稳定的。
在obj = [1, 2,], [3, 4], [5, 6]的情况下,这里的所有解决方案都很好,包括列表理解和 itertools.chain.from_iterable。
但是,考虑这个稍微复杂的案例:
>>> obj = [[1, 2, 3], [4, 5], 6, 'abc', [7], [8, [9, 10]]]
这里有几个问题:
您可以以以下方式解决此问题:
>>> from collections import Iterable
>>> from six import string_types
>>> def flatten(obj):
... for i in obj:
... if isinstance(i, Iterable) and not isinstance(i, string_types):
... yield from flatten(i)
... else:
... yield i
>>> list(flatten(obj))
[1, 2, 3, 4, 5, 6, 'abc', 7, 8, 9, 10]
在这里,您可以检查(一)的子元素(一)与(一)的Iterable(一)无效,从(一)的ABC,但也希望确保(二)的元素(一)不是“类似于(一)的”。
作者的注意事项:这是非常不有效的,但有趣,因为单曲是惊人的。
>>> xss = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
>>> sum(xss, [])
[1, 2, 3, 4, 5, 6, 7, 8, 9]
总数是不可分割 xss 的元素,并使用第二个论点作为总数的初始值(默认初始值为0,这不是列表)。
因為你們是清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清。
请注意,它只适用于列表列表,对于列表列表列表,您将需要另一个解决方案。