以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。


如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?

在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。


当前回答

如果你想清理一切,并保持一个单独的元素列表,你也可以使用它。

list_of_lists = [[1,2], [2,3], [3,4]]
list(set.union(*[set(s) for s in list_of_lists]))

其他回答

def flatten(itr):
    for x in itr:
        try:
            yield from flatten(x)
        except TypeError:
            yield x

使用:这是一个发电机,通常你想将它插入一个不可分割的构建器,如列表()或<<<<<<<<或使用它在一个为旋转。

这个解决方案的好处是:

工作任何类型的无缝(即使是未来的!)工作任何组合和深度的无缝工作,如果顶级包含无依赖物品,快速和高效(你可以平滑无缝的部分,没有浪费时间的剩余部分你不需要)多样性(你可以使用它来构建一个无缝的你的选择或在旋转)

注:由于所有 iterables 都是浮动的,所以线条分为单个字符的序列. 如果您不喜欢/不喜欢这种行为,您可以使用下列版本,从浮动的 iterables 如线条和比特中进行过滤:

def flatten(itr):
    if type(itr) in (str,bytes):
        yield itr
    else:
        for x in itr:
            try:
                yield from flatten(x)
            except TypeError:
                yield x

我创建了一点功能,基本上可以平滑任何东西. 你可以用管道:管道安装平滑一切

from flatten_everything import flatten_everything
withoutprotection=list(
    flatten_everything(
        [
            1,
            1,
            2,
            [3, 4, 5, [6, 3, [2, 5, ["sfs", "sdfsfdsf",]]]],
            1,
            3,
            34,
            [
                55,
                {"brand": "Ford", "model": "Mustang", "year": 1964, "yearxx": 2020},
                pd.DataFrame({"col1": [1, 2], "col2": [3, 4]}),
                {"col1": [1, 2], "col2": [3, 4]},
                55,
                {"k32", 34},
                np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]),
                (np.arange(22), np.eye(2, 2), 33),
            ],
        ]
    )
)
print(withoutprotection)
output:
[1, 1, 2, 3, 4, 5, 6, 3, 2, 5, 'sfs', 'sdfsfdsf', 1, 3, 34, 55, 'Ford', 'Mustang', 1964, 2020, 1, 2, 3, 4, 1, 2, 3, 4, 55, 34, 'k32', 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 1.0, 0.0, 0.0, 1.0, 33]

你甚至可以保护物体免受闪烁:

from flatten_everything import ProtectedDict,ProtectedList,ProtectedTuple
withprotection=list(
    flatten_everything(
        [
            1,
            1,
            2,
            [3, 4, 5, [6, 3, [2, 5, ProtectedList(["sfs", "sdfsfdsf",])]]],
            1,
            3,
            34,
            [
                55,
                ProtectedDict({"brand": "Ford", "model": "Mustang", "year": 1964, "yearxx": 2020}),
                pd.DataFrame({"col1": [1, 2], "col2": [3, 4]}),
                {"col1": [1, 2], "col2": [3, 4]},
                55,
                {"k32", 34},
                np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]),
                ProtectedTuple((np.arange(22), np.eye(2, 2), 33)),
            ],
        ]
    )
)
print(withprotection)
output:
[1, 1, 2, 3, 4, 5, 6, 3, 2, 5, ['sfs', 'sdfsfdsf'], 1, 3, 34, 55, {'brand': 'Ford', 'model': 'Mustang', 'year': 1964, 'yearxx': 2020}, 1, 2, 3, 4, 1, 2, 3, 4, 55, 34, 'k32', 1, 2, 3, 4, 5, 6, 7, 8, (array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,17, 18, 19, 20, 21]), array([[1., 0.], [0., 1.]]), 33)]

作者的注意事项:这是非常不有效的,但有趣,因为单曲是惊人的。

>>> xss = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
>>> sum(xss, [])
[1, 2, 3, 4, 5, 6, 7, 8, 9]

总数是不可分割 xss 的元素,并使用第二个论点作为总数的初始值(默认初始值为0,这不是列表)。

因為你們是清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清清。

请注意,它只适用于列表列表,对于列表列表列表,您将需要另一个解决方案。

def flatten_array(arr):
  result = []
  for item in arr:
    if isinstance(item, list):
      for num in item:
        result.append(num)
    else:
      result.append(item)
  return result

print(flatten_array([1, 2, [3, 4, 5], 6, [7, 8], 9]))
// output: [1, 2, 3, 4, 5, 6, 7, 8, 9]

一个非回归功能,以便在任何深度的列表列表:

def flatten_list(list1):
    out = []
    inside = list1
    while inside:
        x = inside.pop(0)
        if isinstance(x, list):
            inside[0:0] = x
        else:
            out.append(x)
    return out

l = [[[1,2],3,[4,[[5,6],7],[8]]],[9,10,11]]
flatten_list(l)
# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]