想象两个正整数A和b,我想把这两个组合成一个整数C。
不可能有其他整数D和E组合成C。 所以把它们和加法运算符结合是不行的。例:30 + 10 = 40 = 40 + 0 = 39 + 1 连接也不管用。例如“31”+“2”= 312 =“3”+“12”
这种组合操作也应该是确定的(总是用相同的输入产生相同的结果),并且应该总是在整数的正侧或负侧产生一个整数。
想象两个正整数A和b,我想把这两个组合成一个整数C。
不可能有其他整数D和E组合成C。 所以把它们和加法运算符结合是不行的。例:30 + 10 = 40 = 40 + 0 = 39 + 1 连接也不管用。例如“31”+“2”= 312 =“3”+“12”
这种组合操作也应该是确定的(总是用相同的输入产生相同的结果),并且应该总是在整数的正侧或负侧产生一个整数。
当前回答
你正在寻找一个双射NxN - >n映射。这些是用于例如燕尾。请看这个PDF文件,它介绍了所谓的配对函数。维基百科介绍了一个特定的配对函数,即康托配对函数:
备注:三个
As others have made clear, if you plan to implement a pairing function, you may soon find you need arbitrarily large integers (bignums). If you don't want to make a distinction between the pairs (a, b) and (b, a), then sort a and b before applying the pairing function. Actually I lied. You are looking for a bijective ZxZ -> N mapping. Cantor's function only works on non-negative numbers. This is not a problem however, because it's easy to define a bijection f : Z -> N, like so: f(n) = n * 2 if n >= 0 f(n) = -n * 2 - 1 if n < 0
其他回答
看看这个:http://en.wikipedia.org/wiki/Pigeonhole_principle。如果A, B, C是同一类型,就不能做。如果A和B是16位整数,而C是32位整数,那么您可以简单地使用移位。
哈希算法的本质是它们不能为每个不同的输入提供唯一的哈希。
f(a, b) = s(a+b) + a,其中 s(n) = n*(n+1)/2
这是一个函数,它是确定的。 它也是单射的——f映射不同(a,b)对的不同值。你可以证明 它使用的事实是:s(a+b+1)-s(a+b) = a+b+1 <一个。 它返回非常小的值——如果你打算用它来做数组索引,那很好,因为数组不需要很大。 它是缓存友好的——如果两个(a, b)对彼此接近,那么f将彼此接近的数字映射到它们(与其他方法相比)。
我不明白您所说的:
应该总是产生一个整数 不管是积极的还是消极的 整数的边
我如何在这个论坛写(大于),(小于)字符?
假设你有一个32位整数,为什么不把a移到前16位的一半,把B移到另一半?
def vec_pack(vec):
return vec[0] + vec[1] * 65536;
def vec_unpack(number):
return [number % 65536, number // 65536];
除了尽可能节省空间和计算成本之外,一个非常酷的副作用是,您可以在填充的数字上进行向量计算。
a = vec_pack([2,4])
b = vec_pack([1,2])
print(vec_unpack(a+b)) # [3, 6] Vector addition
print(vec_unpack(a-b)) # [1, 2] Vector subtraction
print(vec_unpack(a*2)) # [4, 8] Scalar multiplication
你的建议是不可能的。总会有碰撞。
为了将两个对象映射到另一个单独的集合,映射的集合必须具有预期组合数量的最小大小:
假设有一个32位整数,则有2147483647个正整数。选择其中两个顺序无关紧要且具有重复的组合,将得到2305843008139952128个组合。这并不适合32位整数的集合。
不过,你可以把这个映射压缩成61位。使用64位整数可能是最简单的。将高的字设置为较小的整数,低的字设置为较大的整数。
这可能吗? 两个整数的组合。它们都有- 2147,483,648到2147,483,647的范围,但你只会看到正数。 2147483647^2 = 4,61169e +18种组合。 因为每个组合都必须是唯一的,并且结果是一个整数,所以您需要某种神奇的整数来包含这个数量的数字。
还是我的逻辑有问题?