想象两个正整数A和b,我想把这两个组合成一个整数C。
不可能有其他整数D和E组合成C。 所以把它们和加法运算符结合是不行的。例:30 + 10 = 40 = 40 + 0 = 39 + 1 连接也不管用。例如“31”+“2”= 312 =“3”+“12”
这种组合操作也应该是确定的(总是用相同的输入产生相同的结果),并且应该总是在整数的正侧或负侧产生一个整数。
想象两个正整数A和b,我想把这两个组合成一个整数C。
不可能有其他整数D和E组合成C。 所以把它们和加法运算符结合是不行的。例:30 + 10 = 40 = 40 + 0 = 39 + 1 连接也不管用。例如“31”+“2”= 312 =“3”+“12”
这种组合操作也应该是确定的(总是用相同的输入产生相同的结果),并且应该总是在整数的正侧或负侧产生一个整数。
当前回答
你正在寻找一个双射NxN - >n映射。这些是用于例如燕尾。请看这个PDF文件,它介绍了所谓的配对函数。维基百科介绍了一个特定的配对函数,即康托配对函数:
备注:三个
As others have made clear, if you plan to implement a pairing function, you may soon find you need arbitrarily large integers (bignums). If you don't want to make a distinction between the pairs (a, b) and (b, a), then sort a and b before applying the pairing function. Actually I lied. You are looking for a bijective ZxZ -> N mapping. Cantor's function only works on non-negative numbers. This is not a problem however, because it's easy to define a bijection f : Z -> N, like so: f(n) = n * 2 if n >= 0 f(n) = -n * 2 - 1 if n < 0
其他回答
如果A和B可以用2个字节表示,那么可以用4个字节组合它们。把A放在最有效的一半,B放在最不有效的一半。
在C语言中,这给出了(假设sizeof(short)=2和sizeof(int)=4):
unsigned int combine(unsigned short A, unsigned short B)
{
return ((unsigned)A<<16) | (unsigned)B;
}
unsigned short getA(unsigned int C)
{
return C>>16;
}
unsigned short getB(unsigned int C)
{
return C & 0xFFFF; // or return (unsigned short)C;
}
使输入unsigned short或uint16_t确保他们在你|或+他们一起之前零扩展。否则- B会将上面的位设置为全1或,或者如果你添加,则从上半部分减去1。
强制转换(unsigned)A可以避免将窄类型默认提升为带符号int后左移的带符号溢出UB。对于更广泛的类型,也必须避免转移出位你保持,如((uint64_t)A << 32 | B,因为默认提升停止在int。
(unsigned)B强制转换是不必要的;重要的是它一开始是无符号空头B。左边的|是无符号的意味着它也将转换为无符号的。
你可以将它用于有符号类型,至少是getA和getB,你可以从combine返回有符号int,但是输入需要0 -extend,所以在C中你需要它们在扩大之前是无符号的short。比如((unsigned)(unsigned空头)A << 16) | (unsigned空头)B
你可能想要使用uint16_t和uint32_t,来定义类型宽度,以匹配你正在使用的移位计数。
假设我们有两个数字B和C,把它们编码成一个数字A
A = b + c * n
在哪里
B= a % n = B
C= a / n = C
如果你想要更多的控制,比如为第一个数字分配X位,为第二个数字分配Y位,你可以使用下面的代码:
class NumsCombiner
{
int num_a_bits_size;
int num_b_bits_size;
int BitsExtract(int number, int k, int p)
{
return (((1 << k) - 1) & (number >> (p - 1)));
}
public:
NumsCombiner(int num_a_bits_size, int num_b_bits_size)
{
this->num_a_bits_size = num_a_bits_size;
this->num_b_bits_size = num_b_bits_size;
}
int StoreAB(int num_a, int num_b)
{
return (num_b << num_a_bits_size) | num_a;
}
int GetNumA(int bnum)
{
return BitsExtract(bnum, num_a_bits_size, 1);
}
int GetNumB(int bnum)
{
return BitsExtract(bnum, num_b_bits_size, num_a_bits_size + 1);
}
};
我总共使用了32位。这里的想法是,如果你想让第一个数字最多10位,第二个数字最多12位,你可以这样做:
NumsCombiner nums_mapper(10/*bits for first number*/, 12/*bits for second number*/);
现在可以在num_a中存储2^10 - 1 = 1023的最大值,在num_b中存储2^12 - 1 = 4095的最大值。
设置num A和num B的值。
int bnum = nums_mapper.StoreAB(10/*value for a*/, 12 /*value from b*/);
现在bnum是所有的位(总共32位)。您可以将代码修改为使用64位) 要得到num a:
int a = nums_mapper.GetNumA(bnum);
要得到num b:
int b = nums_mapper.GetNumB(bnum);
编辑: Bnum可以存储在类中。我做这件事不是因为我自己的需要 我分享了代码,希望对您有所帮助。
感谢来源: https://www.geeksforgeeks.org/extract-k-bits-given-position-number/ 对于函数提取位,也感谢mouviciel在这篇文章中的回答。 利用这些资源,我可以找出更先进的解决方案
假设a是第一个,b是第二个。设p是a+1个质数,q是b+1个质数
然后,如果a<b,结果是pq,如果a>b,结果是2pq。如果a=b,让它是p^2。
假设你有一个32位整数,为什么不把a移到前16位的一半,把B移到另一半?
def vec_pack(vec):
return vec[0] + vec[1] * 65536;
def vec_unpack(number):
return [number % 65536, number // 65536];
除了尽可能节省空间和计算成本之外,一个非常酷的副作用是,您可以在填充的数字上进行向量计算。
a = vec_pack([2,4])
b = vec_pack([1,2])
print(vec_unpack(a+b)) # [3, 6] Vector addition
print(vec_unpack(a-b)) # [1, 2] Vector subtraction
print(vec_unpack(a*2)) # [4, 8] Scalar multiplication