在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?

我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。


当前回答

在Coursera“反应式编程原理”培训中,Erik Meier将其描述为:

"Monads are return types that guide you through the happy path." -Erik Meijer

其他回答

你应该首先了解函子是什么。在此之前,先了解高阶函数。

高阶函数只是一个以函数为自变量的函数。

函子是任何类型构造T,其中存在一个高阶函数,称之为map,它将类型为A->b的函数(给定任意两个类型A和b)转换为函数Ta->Tb。该map函数还必须遵守恒等式和复合法则,以便以下表达式对所有p和q返回true(Haskell表示法):

map id = id
map (p . q) = map p . map q

例如,名为List的类型构造函数是一个函子,如果它配备了一个类型为(a->b)->Lista->Listb的函数,该函数遵守上述定律。唯一实际的实施是显而易见的。生成的Lista->Listb函数在给定列表上迭代,为每个元素调用(a->b)函数,并返回结果列表。

monad本质上只是一个函子T,它有两个额外的方法,类型为T(T A)->T A的join和类型为A->T A的unit(有时称为return、fork或pure)。对于Haskell中的列表:

join :: [[a]] -> [a]
pure :: a -> [a]

为什么有用?因为例如,您可以使用返回列表的函数映射列表。Join获取生成的列表列表并将它们连接起来。列表是monad,因为这是可能的。

您可以编写一个函数,先映射,然后连接。此函数称为bind或flatMap,或(>>=)或(=<<)。这通常是Haskell中给出monad实例的方式。

monad必须满足某些定律,即联接必须是关联的。这意味着,如果您的值x类型为[[a]]],那么join(join x)应该等于join(map joinx)。纯必须是联接的标识,这样联接(纯x)==x。

Monad是一个可应用的(即,你可以将二进制(因此,“n元”)函数提升到(1),并将纯值注入(2))Functor(即,可以映射到(3)的函数,即提升一元函数到(3”),它还具有展平嵌套数据类型的能力(三个概念中的每一个都遵循其相应的一组规则)。在Haskell中,这种扁平化操作称为join。

此“联接”操作的常规(通用、参数化)类型为:

join  ::  Monad m  =>  m (m a)  ->  m a

对于任何monad m(注意,类型中的所有ms都是相同的!)。

特定的m monad定义了其特定版本的join,该版本适用于由类型m A的monadic值“携带”的任何值类型A。某些特定类型包括:

join  ::  [[a]]           -> [a]         -- for lists, or nondeterministic values
join  ::  Maybe (Maybe a) -> Maybe a     -- for Maybe, or optional values
join  ::  IO    (IO    a) -> IO    a     -- for I/O-produced values

连接操作将产生a型值的m计算的m计算转换为a型值组合的m计算。这允许将计算步骤组合成一个更大的计算。

结合“bind”(>>=)运算符的计算步骤简单地使用fmap和join,即。

(ma >>= k)  ==  join (fmap k ma)
{-
  ma        :: m a            -- `m`-computation which produces `a`-type values
  k         ::   a -> m b     --  create new `m`-computation from an `a`-type value
  fmap k ma :: m    ( m b )   -- `m`-computation of `m`-computation of `b`-type values
  (m >>= k) :: m        b     -- `m`-computation which produces `b`-type values
-}

相反,可以通过bind定义join,join mma==join(fmap id mma)==mma>>=id,其中id ma=ma——对于给定的类型m,以更方便的为准。

对于monad,do表示法及其使用代码的等效绑定,

do { x <- mx ; y <- my ; return (f x y) }        --   x :: a   ,   mx :: m a
                                                 --   y :: b   ,   my :: m b
mx >>= (\x ->                                    -- nested
            my >>= (\y ->                        --  lambda
                         return (f x y) ))       --   functions

可以读为

首先“做”mx,当它完成时,将其“结果”作为x,让我用它“做”其他事情。

在给定的do块中,绑定箭头<-右侧的每个值对于某些类型a都是m a类型,在整个do块中都是相同的monad m。

返回x是一个中立的m计算,它只产生给定的纯值x,因此将任何m计算与返回绑定都不会改变该计算。


(1) 提升A2::适用m=>(a->b->c)->m a->m b->m c

(2) 纯::适用m=>a->m a

(3) 具有fmap::函数m=>(a->b)->m a->m b

还有等效的Monad方法,

liftM2 :: Monad m => (a -> b -> c) -> m a -> m b -> m c
return :: Monad m =>  a            -> m a
liftM  :: Monad m => (a -> b)      -> m a -> m b

给定monad,其他定义可以如下

pure   a       = return a
fmap   f ma    = do { a <- ma ;            return (f a)   }
liftA2 f ma mb = do { a <- ma ; b <- mb  ; return (f a b) }
(ma >>= k)     = do { a <- ma ; b <- k a ; return  b      }

monad是一种具有两个操作的数据类型:>>=(又名bind)和return(又名unit)。return接受一个任意值并用它创建monad的实例。>>=接受monad的一个实例并在其上映射一个函数。(您已经可以看到monad是一种奇怪的数据类型,因为在大多数编程语言中,您无法编写一个接受任意值并从中创建类型的函数。monad使用一种参数多态性。)

在Haskell表示法中,monad接口是

class Monad m where
  return :: a -> m a
  (>>=) :: forall a b . m a -> (a -> m b) -> m b

这些操作应该遵守某些“法则”,但这并不是非常重要的:“法则”只是将操作的合理实现行为化(基本上,>>=和return应该就如何将值转换为monad实例达成一致,并且>>=是关联的)。

Monad不仅仅是关于状态和I/O:它们抽象了一种常见的计算模式,包括处理状态、I/O、异常和非确定性。可能最容易理解的单子是列表和选项类型:

instance Monad [ ] where
    []     >>= k = []
    (x:xs) >>= k = k x ++ (xs >>= k)
    return x     = [x]

instance Monad Maybe where
    Just x  >>= k = k x
    Nothing >>= k = Nothing
    return x      = Just x

其中[]和:是列表构造函数,++是串联运算符,Just和Nothing是Maybe构造函数。这两个monad都在各自的数据类型上封装了常见的有用的计算模式(请注意,两者都与副作用或I/O无关)。

你真的需要写一些非平凡的Haskell代码来理解monad的含义以及它们为什么有用。

解释monad似乎就像解释控制流语句一样。想象一下,一个非程序员要求你解释它们?

你可以给他们一个涉及理论的解释——布尔逻辑、寄存器值、指针、堆栈和框架。但那太疯狂了。

你可以用语法来解释它们。基本上,C中的所有控制流语句都有大括号,您可以通过它们相对于括号的位置来区分条件和条件代码。这可能更疯狂。

或者,您也可以解释循环、if语句、例程、子例程以及可能的协例程。

Monad可以取代相当多的编程技术。语言中有一种特定的语法支持它们,还有一些关于它们的理论。

它们也是函数式程序员使用命令式代码而不承认它的一种方式,但这并不是他们唯一的用途。

http://code.google.com/p/monad-tutorial/正是为了解决这个问题而进行的工作。