前段时间我有一次有趣的面试经历。问题一开始很简单:

Q1:我们有一个袋子,里面有数字1,2,3,…,100。每个数字恰好出现一次,所以有100个数字。现在从袋子里随机抽取一个数字。找到丢失的号码。

当然,我以前听过这个面试问题,所以我很快就回答了这个问题:

A1:嗯,1 + 2 + 3 +…+ N的和是(N+1)(N/2)(参见维基百科:等差级数的和)。当N = 100时,和是5050。 因此,如果所有的数字都在袋子里,总和将恰好是5050。因为少了一个数,总和就会小于这个数,差的就是这个数。所以我们可以在O(N)时间和O(1)空间中找到这个缺失的数。

在这一点上,我认为我做得很好,但突然间,问题发生了意想不到的转变:

这是正确的,但是如果少了两个数字,你会怎么做?

我以前从未见过/听过/考虑过这种变化,所以我很恐慌,无法回答这个问题。面试官坚持要知道我的思考过程,所以我提到,也许我们可以通过与预期产品进行比较来获得更多信息,或者在从第一次传递中收集到一些信息后再进行第二次传递,等等,但我真的只是在黑暗中拍摄,而不是真正有一个明确的解决方案的路径。

面试官试图鼓励我说,有第二个方程确实是解决问题的一种方法。在这一点上,我有点不安(因为事先不知道答案),并问这是一种通用的(阅读:“有用的”)编程技术,还是只是一个技巧/答案。

面试官的回答让我惊讶:你可以把这个技巧概括为3个缺失的数字。事实上,你可以推广它来找到k个缺失的数。

Qk:如果袋子里少了k个数字,你如何有效地找到它?

这是几个月前的事了,我还不明白这个技巧是什么。显然有一个Ω(N)的时间下限,因为我们必须扫描所有的数字至少一次,但面试官坚持认为,解决技术的时间和空间复杂度(减去O(N)次输入扫描)定义为k而不是N。

所以问题很简单:

如何解决Q2? 你会如何解决Q3? 如何求解Qk?


澄清

Generally there are N numbers from 1..N, not just 1..100. I'm not looking for the obvious set-based solution, e.g. using a bit set, encoding the presence/absence each number by the value of a designated bit, therefore using O(N) bits in additional space. We can't afford any additional space proportional to N. I'm also not looking for the obvious sort-first approach. This and the set-based approach are worth mentioning in an interview (they are easy to implement, and depending on N, can be very practical). I'm looking for the Holy Grail solution (which may or may not be practical to implement, but has the desired asymptotic characteristics nevertheless).

当然,你必须以O(N)为单位扫描输入,但你只能捕获少量的信息(用k而不是N定义),然后必须以某种方式找到k个缺失的数字。


当前回答

也许这个算法可以解决问题1:

预计算前100个整数的xor (val=1^2^3^4....100) 对来自输入流的元素进行Xor (val1=val1^next_input) 最终的答案= val ^ val1

或者更好:

def GetValue(A)
  val=0
  for i=1 to 100
    do
      val=val^i
    done
  for value in A:
    do
      val=val^value 
    done
  return val

这个算法实际上可以扩展到两个缺失的数字。第一步还是一样。当我们调用缺少两个数字的GetValue时,结果将是a1^a2是缺少的两个数字。让说

跌倒 = a1^a2

Now to sieve out a1 and a2 from val we take any set bit in val. Lets say the ith bit is set in val. That means that a1 and a2 have different parity at ith bit position. Now we do another iteration on the original array and keep two xor values. One for the numbers which have the ith bit set and other which doesn't have the ith bit set. We now have two buckets of numbers, and its guranteed that a1 and a2 will lie in different buckets. Now repeat the same what we did for finding one missing element on each of the bucket.

其他回答

我相信我有一个O(k)时间和O(log(k)空间算法,前提是你有任意大整数的下限(x)和log2(x)函数:

你有一个k位的长整数(因此是log8(k)空间),其中你加上x^2,其中x是你在袋子里找到的下一个数字:s=1^2+2^2+…这需要O(N)时间(这对面试官来说不是问题)。最后得到j= (log2(s))这是你要找的最大的数。然后s=s-j,重复上面的步骤:

for (i = 0 ; i < k ; i++)
{
  j = floor(log2(s));
  missing[i] = j;
  s -= j;
}

现在,对于2756位的整数,通常没有floor和log2函数,而是用于double。所以呢?简单地说,对于每2个字节(或1、3、4),您可以使用这些函数来获得所需的数字,但这增加了O(N)因素的时间复杂度

谢谢你这个有趣的问题:

因为你让我想起了牛顿的工作,它真的可以解决这个问题

请参考牛顿恒等式

As变量的数量=方程的数量(必须为一致性)

我认为,对于这个问题,我们应该提高袋数的幂,以便创建不同的方程。

我不知道,但是,我相信如果有一个函数,比如f,我们要加上f(xi)

x1+x2+…+ xk = z1

x12 + x22 + ... + xk2 = z2

............

............

............

x1k + x2k + ... + xkk = XP

休息是一个不确定时间和空间复杂性的数学工作,但牛顿恒等式肯定会发挥重要作用。

我们不能用集合理论吗 .difference_update()或在这个问题方法中是否有线性代数的机会?

如果一个数字只出现一次,用下面的方法很容易分辨:

创建一个大小为给定数字的布尔数组boolArray;这里是100。

遍历输入数字,并根据数字值将一个元素设置为true。例如,如果找到45,则设置boolArray[45-1] = true;

这是一个O(N)运算。

然后循环遍历boolArray。如果一个元素保持为false,那么element + 1的下标就是缺失的数字。例如,如果boolArray[44]为false,我们就知道第45号丢失了。

这是O(n)运算。空间复杂度为O(1)。

所以这个解可以从一个给定的连续数集中找到任何缺失的数。

你可以解出Q2如果你有两个链表的和和和两个链表的乘积。

(l1为原始列表,l2为修改后的列表)

d = sum(l1) - sum(l2)
m = mul(l1) / mul(l2)

我们可以优化它,因为等差级数的和是第一项和最后一项的平均值的n倍:

n = len(l1)
d = (n/2)*(n+1) - sum(l2)

现在我们知道(如果a和b是被移除的数字):

a + b = d
a * b = m

所以我们可以重新排列为:

a = s - b
b * (s - b) = m

然后乘出来:

-b^2 + s*b = m

然后重新排列,使右边为零

-b^2 + s*b - m = 0

然后用二次公式求解:

b = (-s + sqrt(s^2 - (4*-1*-m)))/-2
a = s - b

Python 3示例代码:

from functools import reduce
import operator
import math
x = list(range(1,21))
sx = (len(x)/2)*(len(x)+1)
x.remove(15)
x.remove(5)
mul = lambda l: reduce(operator.mul,l)
s = sx - sum(x)
m = mul(range(1,21)) / mul(x)
b = (-s + math.sqrt(s**2 - (-4*(-m))))/-2
a = s - b
print(a,b) #15,5

我不知道根号,减法和求和函数的复杂性,所以我无法计算出这个解决方案的复杂性(如果有人知道,请在下面评论)。

我们假设它是一个从1到N的数组,它的元素是a1, a2, ....一个:

1+N=N+1;
2+N-1=N+1;

… 所以这个和是唯一的。我们可以从头到尾扫描数组来添加两个元素。如果和是N+1;好吧,否则它们就不见了。

for (I <= N/2) {
    temp = a[I] + a[n-I];
    if (temp != N+1) then
        Find the missing number or numbers
}

迭代这个循环,很容易就能得到答案。