前段时间我有一次有趣的面试经历。问题一开始很简单:

Q1:我们有一个袋子,里面有数字1,2,3,…,100。每个数字恰好出现一次,所以有100个数字。现在从袋子里随机抽取一个数字。找到丢失的号码。

当然,我以前听过这个面试问题,所以我很快就回答了这个问题:

A1:嗯,1 + 2 + 3 +…+ N的和是(N+1)(N/2)(参见维基百科:等差级数的和)。当N = 100时,和是5050。 因此,如果所有的数字都在袋子里,总和将恰好是5050。因为少了一个数,总和就会小于这个数,差的就是这个数。所以我们可以在O(N)时间和O(1)空间中找到这个缺失的数。

在这一点上,我认为我做得很好,但突然间,问题发生了意想不到的转变:

这是正确的,但是如果少了两个数字,你会怎么做?

我以前从未见过/听过/考虑过这种变化,所以我很恐慌,无法回答这个问题。面试官坚持要知道我的思考过程,所以我提到,也许我们可以通过与预期产品进行比较来获得更多信息,或者在从第一次传递中收集到一些信息后再进行第二次传递,等等,但我真的只是在黑暗中拍摄,而不是真正有一个明确的解决方案的路径。

面试官试图鼓励我说,有第二个方程确实是解决问题的一种方法。在这一点上,我有点不安(因为事先不知道答案),并问这是一种通用的(阅读:“有用的”)编程技术,还是只是一个技巧/答案。

面试官的回答让我惊讶:你可以把这个技巧概括为3个缺失的数字。事实上,你可以推广它来找到k个缺失的数。

Qk:如果袋子里少了k个数字,你如何有效地找到它?

这是几个月前的事了,我还不明白这个技巧是什么。显然有一个Ω(N)的时间下限,因为我们必须扫描所有的数字至少一次,但面试官坚持认为,解决技术的时间和空间复杂度(减去O(N)次输入扫描)定义为k而不是N。

所以问题很简单:

如何解决Q2? 你会如何解决Q3? 如何求解Qk?


澄清

Generally there are N numbers from 1..N, not just 1..100. I'm not looking for the obvious set-based solution, e.g. using a bit set, encoding the presence/absence each number by the value of a designated bit, therefore using O(N) bits in additional space. We can't afford any additional space proportional to N. I'm also not looking for the obvious sort-first approach. This and the set-based approach are worth mentioning in an interview (they are easy to implement, and depending on N, can be very practical). I'm looking for the Holy Grail solution (which may or may not be practical to implement, but has the desired asymptotic characteristics nevertheless).

当然,你必须以O(N)为单位扫描输入,但你只能捕获少量的信息(用k而不是N定义),然后必须以某种方式找到k个缺失的数字。


当前回答

You can motivate the solution by thinking about it in terms of symmetries (groups, in math language). No matter the order of the set of numbers, the answer should be the same. If you're going to use k functions to help determine the missing elements, you should be thinking about what functions have that property: symmetric. The function s_1(x) = x_1 + x_2 + ... + x_n is an example of a symmetric function, but there are others of higher degree. In particular, consider the elementary symmetric functions. The elementary symmetric function of degree 2 is s_2(x) = x_1 x_2 + x_1 x_3 + ... + x_1 x_n + x_2 x_3 + ... + x_(n-1) x_n, the sum of all products of two elements. Similarly for the elementary symmetric functions of degree 3 and higher. They are obviously symmetric. Furthermore, it turns out they are the building blocks for all symmetric functions.

你可以通过注意s_2(x,x_(n+1)) = s_2(x) + s_1(x)(x_(n+1))来构建初等对称函数。进一步思考应该会使您相信s_3(x,x_(n+1)) = s_3(x) + s_2(x)(x_(n+1))等等,因此它们可以在一次传递中计算。

我们如何知道数组中缺少了哪些项?考虑多项式(z-x_1) (z-x_2)……(z-x_n)。如果你输入任意一个数字x_i,它的值都是0。展开多项式,得到z^n-s_1(x)z^(n-1)+。+ (-1)^n s_n。初等对称函数也出现在这里,这并不奇怪,因为多项式应该保持不变,如果我们对根进行任何排列。

所以我们可以建立一个多项式,并尝试因式分解来找出哪些数不在集合中,就像其他人提到的那样。

Finally, if we are concerned about overflowing memory with large numbers (the nth symmetric polynomial will be of the order 100!), we can do these calculations mod p where p is a prime bigger than 100. In that case we evaluate the polynomial mod p and find that it again evaluates to 0 when the input is a number in the set, and it evaluates to a non-zero value when the input is a number not in the set. However, as others have pointed out, to get the values out of the polynomial in time that depends on k, not N, we have to factor the polynomial mod p.

其他回答

对于不同的k值,方法将是不同的,所以不会有一个关于k的通用答案。例如,对于k=1,可以利用自然数和,但对于k= n/2,必须使用某种bitset。对于k=n-1也是一样,我们可以简单地将袋子里唯一的数字与其他数字进行比较。

您可能需要澄清O(k)的含义。

这里有一个任意k的简单解:对于你的数字集中的每一个v,将2^v相加。最后,循环i从1到n,如果和2^i按位和为零,则i缺失。(或者在数字上,如果和的底除以2^i是偶数。或者模2^(i+1) < 2^i

容易,对吧?O(N)时间,O(1)存储,支持任意k。

除了你在计算一个巨大的数字,在真正的计算机上,每个数字都需要O(N)个空间。事实上,这个解和位向量是一样的。

所以你可以很聪明地计算和,平方和和和立方体的和…直到v^k的和,然后用复杂的数学方法提取结果。但这些都是很大的数字,这就引出了一个问题:我们谈论的是哪种抽象的运作模式?O(1)空间中有多少是合适的,以及需要多长时间才能将所需大小的数字相加?

你可以解出Q2如果你有两个链表的和和和两个链表的乘积。

(l1为原始列表,l2为修改后的列表)

d = sum(l1) - sum(l2)
m = mul(l1) / mul(l2)

我们可以优化它,因为等差级数的和是第一项和最后一项的平均值的n倍:

n = len(l1)
d = (n/2)*(n+1) - sum(l2)

现在我们知道(如果a和b是被移除的数字):

a + b = d
a * b = m

所以我们可以重新排列为:

a = s - b
b * (s - b) = m

然后乘出来:

-b^2 + s*b = m

然后重新排列,使右边为零

-b^2 + s*b - m = 0

然后用二次公式求解:

b = (-s + sqrt(s^2 - (4*-1*-m)))/-2
a = s - b

Python 3示例代码:

from functools import reduce
import operator
import math
x = list(range(1,21))
sx = (len(x)/2)*(len(x)+1)
x.remove(15)
x.remove(5)
mul = lambda l: reduce(operator.mul,l)
s = sx - sum(x)
m = mul(range(1,21)) / mul(x)
b = (-s + math.sqrt(s**2 - (-4*(-m))))/-2
a = s - b
print(a,b) #15,5

我不知道根号,减法和求和函数的复杂性,所以我无法计算出这个解决方案的复杂性(如果有人知道,请在下面评论)。

也许这个算法可以解决问题1:

预计算前100个整数的xor (val=1^2^3^4....100) 对来自输入流的元素进行Xor (val1=val1^next_input) 最终的答案= val ^ val1

或者更好:

def GetValue(A)
  val=0
  for i=1 to 100
    do
      val=val^i
    done
  for value in A:
    do
      val=val^value 
    done
  return val

这个算法实际上可以扩展到两个缺失的数字。第一步还是一样。当我们调用缺少两个数字的GetValue时,结果将是a1^a2是缺少的两个数字。让说

跌倒 = a1^a2

Now to sieve out a1 and a2 from val we take any set bit in val. Lets say the ith bit is set in val. That means that a1 and a2 have different parity at ith bit position. Now we do another iteration on the original array and keep two xor values. One for the numbers which have the ith bit set and other which doesn't have the ith bit set. We now have two buckets of numbers, and its guranteed that a1 and a2 will lie in different buckets. Now repeat the same what we did for finding one missing element on each of the bucket.

非常好的问题。我会用Qk的集合差。很多编程语言甚至都支持它,比如Ruby:

missing = (1..100).to_a - bag

这可能不是最有效的解决方案,但如果我在这种情况下面临这样的任务(已知边界,低边界),这是我在现实生活中会使用的解决方案。如果数字集非常大,那么我当然会考虑一个更有效的算法,但在此之前,简单的解决方案对我来说已经足够了。